33、机器人学习与供应链管理:强化学习的应用探索

机器人学习与供应链管理:强化学习的应用探索

一、机器人学习中的课程学习

1.1 ALP - GMM方法原理

ALP - GMM方法聚焦于参数空间中性能变化最大(绝对学习进度)的位置,并在该差距周围生成参数。这样做的好处是,学习预算不会浪费在已经学习过的状态空间部分,或者当前智能体难以学习的部分。

1.2 实现步骤

1.2.1 创建自定义环境

首先,我们创建一个自定义环境 ALPKukaEnv ,其中关键部分如下:

class ALPKukaEnv(CustomKukaEnv):
    def __init__(self, env_config={}):
        ...
        self.mins = [...]
        self.maxs =  [...]
        self.alp = ALPGMM(mins=self.mins, 
                     maxs=self.maxs, 
                           params={"fit_rate": 20})
        self.task = None
        self.last_episode_reward = None
        self.episode_reward = 0
        super(ALPKukaEnv, self).__init__(env_config)

这里, task

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航避障;②研究智能优化算法(如CPO)在路径规划中的实际部署性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为系统鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值