感受野、下采样相关

本文探讨了深度卷积神经网络中的感受野概念,解释了其对网络工作原理的影响。感受野大小决定了网络单元对输入的依赖区域。通过增加网络层数、下采样或使用空洞卷积可以增大感受野。下采样虽然能减小表示尺寸,但也可能导致信息损失。文章提到了去除池化操作的趋势,特别是在全卷积网络和生成模型中,以及PyTorch中尺寸计算的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于感受野:

  • One of the basic concepts in deep CNNs is the receptive field, or field of view, of a unit in a certain layer in the network. Unlike in fully connected networks, where the value of each unit depends on the entire input to the network, a unit in convolutional networks only depends on a region of the input. This region in the input is the receptive field for that unit
    The concept of receptive field is important for understanding and diagnosing how deep CNNs work. Since anywhere in an input image outside the receptive field of a unit does not affect the value of that unit, it is necessary to carefully control the receptive field, to ensure that it covers the entire relevant image region. In many tasks, especially dense prediction tasks like semantic image segmentation, stereo and optical flow estimation, where we make a prediction for each single pixel in the input image, it is critical for each output pixel to have a big rec
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值