A Simple Problem with Integers
题目传送门
A Simple Problem with Integers
题目大意
给你一个长度为n的数组
进行m次操作,操作包括对区间的值进行加减和对区间进行求和
思路
区间更新,区间查询的树状数组
考虑使用更加简单的树状数组,区间更新可以使用差分维护,区间查询可以开两个数组维护
i
n
t
s
u
m
1
[
N
]
;
/
/
(
D
[
1
]
+
D
[
2
]
+
.
.
.
+
D
[
n
]
)
int\ sum1[N];\ \ \ \ //(D[1] + D[2] + ... + D[n])
int sum1[N]; //(D[1]+D[2]+...+D[n])
i
n
t
s
u
m
2
[
N
]
;
/
/
(
1
∗
D
[
1
]
+
2
∗
D
[
2
]
+
.
.
.
+
n
∗
D
[
n
]
)
int\ sum2[N];\ \ \ \ //(1*D[1] + 2*D[2] + ... + n*D[n])
int sum2[N]; //(1∗D[1]+2∗D[2]+...+n∗D[n])
AC Code
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
#define endl '\n'
#define INF 0x3f3f3f3f
#define int long long
// #define TDS_ACM_LOCAL
const int N=1e6 +9;
int n, m;
int a[N];
int sum1[N]; //(D[1] + D[2] + ... + D[n])
int sum2[N]; //(1*D[1] + 2*D[2] + ... + n*D[n])
int lowbit(int x){
return x&(-x);
}
void updata(int i,int k){
int x = i; //因为x不变,所以得先保存i值
while(i <= n){
sum1[i] += k;
sum2[i] += k * (x-1);
i += lowbit(i);
}
}
int getsum(int i){ //求前缀和
int res = 0, x = i;
while(i > 0){
res += x * sum1[i] - sum2[i];
i -= lowbit(i);
}
return res;
}
void solve(){
cin>>n>>m;
for(int i = 1; i <= n; i++){
cin>>a[i];
updata(i,a[i] - a[i-1]); //输入初值的时候,也相当于更新了值
}
while(m--){
int x, y, k;
string c;
cin>>c;
if(c=="Q"){
cin>>x>>y;
cout<<getsum(y)-getsum(x-1)<<endl;
}
else if(c=="C"){
cin>>x>>y>>k;
updata(x,k), updata(y+1,-k);
}
}
return ;
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
#ifdef TDS_ACM_LOCAL
freopen("D:\\VS code\\.vscode\\testall\\in.txt", "r", stdin);
freopen("D:\\VS code\\.vscode\\testall\\out.txt", "w", stdout);
#endif
solve();
return 0;
}