Python gevent vs thread vs sequence

本文通过实验对比了同步、多线程、协程及多进程四种并发模型在单核CPU环境下的执行效率。测试结果显示,使用gevent库实现的协程模型在处理大量任务时表现最优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

测试机器单核

sequence:

(pythonenv)[xluren@test thread_coroutine_demo]$ cat sequence.py 
import time

def sync_task(i):
    #do something
    time.sleep(1)
    print i,"done"
def sync_run():
    start = time.time()
    for i in range(10):
        sync_task(i)
    end = time.time()

    print("sync task executed in %f second"%(end-start))

sync_run()
结果:

sync task executed in 10.011511 second
(pythonenv)[xluren@test thread_coroutine_demo]$ 

multithread

(pythonenv)[xluren@test thread_coroutine_demo]$ cat multithread.py 
import threading
import time
def sync_task(i):
    #do something
    time.sleep(1)
    print i,"done"
def multi_thread_run():
    start = time.time()
    a=[]
    for i in range(1000):
        t = threading.Thread(target=sync_task,args=(i,))
        a.append(t)
        t.start()
    for i in a:
        i.join()
    end = time.time()

    print("multi thread task executed in %f second"%(end-start))
multi_thread_run()
(pythonenv)[xluren@test thread_coroutine_demo]$ 
结果:

999 done
multi thread task executed in 1.407100 second

gevent:

(pythonenv)[xluren@test thread_coroutine_demo]$ cat gevent_demo.py 
import gevent
import time
def async_task(i):
    #do something
    gevent.sleep(1)
    print i,"done"
def async_run():
    start = time.time()
    coroutins = []

    for i in range(1000):
        coroutins.append(gevent.spawn(async_task,i))
    gevent.joinall(coroutins)
    end = time.time()
    print("async task executed in %f second"%(end-start))
async_run()
(pythonenv)[xluren@test thread_coroutine_demo]$

结果:

998 done
999 done
async task executed in 1.111667 second
(pythonenv)[xluren@test thread_coroutine_demo]$ cat gevent_demo.py

multiprocess

(pythonenv)[xluren@test thread_coroutine_demo]$ cat multiprocess.py 
import multiprocessing
import time
def sync_task(i):
    #do something
    time.sleep(1)
    print i,"done"
def multi_thread_run():
    start = time.time()
    a=[]
    for i in range(1000):
        t = multiprocessing.Process(target=sync_task,args=(i,))
        a.append(t)
        t.start()
    for i in a:
        i.join()
    end = time.time()

    print("multi process task executed in %f second"%(end-start))
multi_thread_run()
(pythonenv)[xluren@test thread_coroutine_demo]$ 
结果:

multi process task executed in 12.607443 second
(pythonenv)[xluren@test thread_coroutine_demo]$ cat multiprocess.py

到时再来个多核的测试,gevent 很好用。尤其他的monkey加上之后。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值