现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。
分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
def fib(num): a, b = 0, 1 for _ in range(num): a, b = b, a + b yield a
题目009:正则表达式的match方法和search方法有什么区别?
点评:正则表达式是字符串处理的重要工具,所以也是面试中经常考察的知识点。在Python中,使用正则表达式有两种方式,一种是直接调用
re
模块中的函数,传入正则表达式和需要处理的字符串;一种是先通过re
模块的compile
函数创建正则表达式对象,然后再通过对象调用方法并传入需要处理的字符串。如果一个正则表达式被频繁的使用,我们推荐用re.compile
函数创建正则表达式对象,这样会减少频繁编译同一个正则表达式所造成的开销。
match
方法是从字符串的起始位置进行正则表达式匹配,返回Match
对象或None。search
方法会扫描整个字符串来找寻匹配的模式,同样也是返回Match对象或None。
题目010:下面这段代码的执行结果是什么。
def multiply():
return [lambda x: i * x for i in range(4)]
print([m(100) for m in multiply()])
运行结果:
[300, 300, 300, 300]
上面代码的运行结果很容易被误判为[0, 100, 200, 300]
。首先需要注意的是multiply
函数用生成式语法返回了一个列表,列表中保存了4个Lambda函数,这4个Lambda函数会返回传入的参数乘以i
的结果。需要注意的是这里有闭包(closure)现象,multiply
函数中的局部变量i
的生命周期被延展了,由于i
最终的值是3
,所以通过m(100)
调列表中的Lambda函数时会返回300
,而且4个调用都是如此。
如果想得到[0, 100, 200, 300]
这个结果,可以按照下面几种方式来修改multiply
函数。
方法一:使用生成器,让函数获得i
的当前值。
def multiply():
return (lambda x: i * x for i in range(4))
print([m(100) for m in multiply()])
或者
def multiply():
for i in range(4):
yield lambda x: x * i
print([m(100) for m in multiply()])
方法二:使用偏函数,彻底避开闭包。
from functools import partial
from operator import __mul__
def multiply():
return [partial(__mul__, i) for i in range(4)]
print([m(100) for m in multiply()])
题目011:Python中为什么没有函数重载?
点评:C++、Java、C#等诸多编程语言都支持函数重载,所谓函数重载指的是在同一个作用域中有多个同名函数,它们拥有不同的参数列表(参数个数不同或参数类型不同或二者皆不同),可以相互区分。重载也是一种多态性,因为通常是在编译时通过参数的个数和类型来确定到底调用哪个重载函数,所以也被称为编译时多态性或者叫前绑定。这个问题的潜台词其实是问面试者是否有其他编程语言的经验,是否理解Python是动态类型语言,是否知道Python中函数的可变参数、关键字参数这些概念。
首先Python是解释型语言,函数重载现象通常出现在编译型语言中。其次Python是动态类型语言,函数的参数没有类型约束,也就无法根据参数类型来区分重载。再者Python中函数的参数可以有默认值,可以使用可变参数和关键字参数,因此即便没有函数重载,也要可以让一个函数根据调用者传入的参数产生不同的行为。
题目012:用Python代码实现Python内置函数max。
点评:这个题目看似简单,但实际上还是比较考察面试者的功底。因为Python内置的
max
函数既可以传入可迭代对象找出最大,又可以传入两个或多个参数找出最大;最为关键的是还可以通过命名关键字参数key
来指定一个用于元素比较的函数,还可以通过default
命名关键字参数来指定当可迭代对象为空时返回的默认值。
下面的代码仅供参考:
def my_max(*args, key=None, default=None):
"""
获取可迭代对象中最大的元素或两个及以上实参中最大的元素
:param args: 一个可迭代对象或多个元素
:param key: 提取用于元素比较的特征值的函数,默认为None
:param default: 如果可迭代对象为空则返回该默认值,如果没有给默认值则引发ValueError异常
:return: 返回可迭代对象或多个元素中的最大元素
"""
if len(args) == 1 and len(args[0]) == 0:
if default:
return default
else:
raise ValueError('max() arg is an empty sequence')
items = args[0] if len(args) == 1 else args
max_elem, max_value = items[0], items[0]
if key:
max_value = key(max_value)
for item in items:
value = item
if key:
value = key(item)
if value > max_value:
max_elem, max_value = item, value
return max_elem
题目013:写一个函数统计传入的列表中每个数字出现的次数并返回对应的字典。
点评:送人头的题目,不解释。
def count_letters(items):
result = {}
for item in items:
if isinstance(item, (int, float)):
result[item] = result.get(item, 0) + 1
return result
也可以直接使用Python标准库中collections
模块的Counter
类来解决这个问题,Counter
是dict
的子类,它会将传入的序列中的每个元素作为键,元素出现的次数作为值来构造字典。
from collections import Counter
def count_letters(items):
counter = Counter(items)
return {key: value for key, value in counter.items() \
if isinstance(key, (int, float))}
题目014:使用Python代码实现遍历一个文件夹的操作。
点评:基本也是送人头的题目,只要用过
os
模块就应该知道怎么做。
Python标准库os
模块的walk
函数提供了遍历一个文件夹的功能,它返回一个生成器。
import os
g = os.walk('/Users/Hao/Downloads/')
for path, dir_list, file_list in g:
for dir_name in dir_list:
print(os.path.join(path, dir_name))
for file_name in file_list:
print(os.path.join(path, file_name))
说明:
os.path
模块提供了很多进行路径操作的工具函数,在项目开发中也是经常会用到的。如果题目明确要求不能使用os.walk
函数,那么可以使用os.listdir
函数来获取指定目录下的文件和文件夹,然后再通过循环遍历用os.isdir
函数判断哪些是文件夹,对于文件夹可以通过递归调用进行遍历,这样也可以实现遍历一个文件夹的操作。
题目015:现有2元、3元、5元共三种面额的货币,如果需要找零99元,一共有多少种找零的方式?
点评:还有一个非常类似的题目:“一个小朋友走楼梯,一次可以走1个台阶、2个台阶或3个台阶,问走完10个台阶一共有多少种走法?”,这两个题目的思路是一样,如果用递归函数来写的话非常简单。
from functools import lru_cache
@lru_cache()
def change_money(total):
if total == 0:
return 1
if total < 0:
return 0
return change_money(total - 2) + change_money(total - 3) + \
change_money(total - 5)
说明:在上面的代码中,我们用
lru_cache
装饰器装饰了递归函数change_money
,如果不做这个优化,上面代码的渐近时间复杂度将会是O
(
3
N
)
O(3^N)
O(3N),而如果参数
total
的值是99
,这个运算量是非常巨大的。lru_cache
装饰器会缓存函数的执行结果,这样就可以减少重复运算所造成的开销,这是空间换时间的策略,也是动态规划的编程思想。
题目016:写一个函数,给定矩阵的阶数n
,输出一个螺旋式数字矩阵。
例如:n = 2,返回:
1 2 4 3
例如:n = 3,返回:
1 2 3 8 9 4 7 6 5
这个题目本身并不复杂,下面的代码仅供参考。
def show_spiral_matrix(n):
matrix = [[0] * n for _ in range(n)]
row, col = 0, 0
num, direction = 1, 0
while num <= n ** 2:
if matrix[row][col] == 0:
matrix[row][col] = num
num += 1
if direction == 0:
if col < n - 1 and matrix[row][col + 1] == 0:
col += 1
else:
direction += 1
elif direction == 1:
if row < n - 1 and matrix[row + 1][col] == 0:
row += 1
else:
direction += 1
elif direction == 2:
if col > 0 and matrix[row][col - 1] == 0:
col -= 1
else:
direction