The parameters ,
,
, and
which, like the three Euler angles, provide a way to uniquely characterize the orientation of a solid body. These parameters satisfy the identities
| (1) | |||
| (2) | |||
| (3) | |||
| (4) | |||
| (5) |
and
| (6) | |||
| (7) |
where denotes the complex conjugate. In terms of the Euler angles
,
, and
, the Cayley-Klein parameters are given by
| (8) | |||
| (9) | |||
| (10) | |||
| (11) |
(Goldstein 1960, p. 155).
The transformation matrix is given in terms of the Cayley-Klein parameters by
| (12) |
(Goldstein 1960, p. 153).
The Cayley-Klein parameters may be viewed as parameters of a matrix (denoted for its close relationship with quaternions)
| (13) |
which characterizes the transformations
| (14) | |||
| (15) |
of a linear space having complex axes. This matrix satisfies
| (16) |
where is the identity matrix and
the conjugate transpose, as well as
| (17) |
In terms of the Euler parameters and the Pauli matrices
, the
-matrix can be written as
| (18) |
(Goldstein 1980, p. 156).
Goldstein, H. "The Cayley-Klein Parameters and Related Quantities." §4-5 in Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, pp. 148-158, 1980.
Varshalovich, D. A.; Moskalev, A. N.; and Khersonskii, V. K. "Description of Rotations in Terms of Unitary Matrices. Cayley-Klein Parameters." §1.4.3 in Quantum Theory of Angular Momentum. Singapore: World Scientific, pp. 24-27, 1988.
CITE THIS AS:
Eric W. Weisstein. "Cayley-Klein Parameters." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Cayley-KleinParameters.html

博客介绍了Cayley - Klein参数,其与欧拉角类似,可唯一表征固体的方向,满足特定恒等式。还给出了基于该参数的变换矩阵,此矩阵可表征具有复轴的线性空间的变换,且满足一定条件,同时提及相关文献资料。
9401

被折叠的 条评论
为什么被折叠?



