bzoj 2038: [2009国家集训队]小Z的袜子(hose) 【莫队算法】

#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
#include<math.h>
using namespace std;
typedef long long ll;
const int N=50000+10;
struct node
{
    int l,r,id;
}Q[N];

int pos[N],n,m,L,R;
int cmp(node a,node b)
{
    if(pos[a.l]==pos[b.l])
        return a.r<b.r;
    return pos[a.l]<pos[b.l];
}

ll a[N],up[N],down[N],cnt[N],p1,p2,tmp;

void add(int x)
{
    int t=a[x];
    p1=p1-cnt[t]*cnt[t]+cnt[t];
    cnt[t]++;
    p1=p1+cnt[t]*cnt[t]-cnt[t];
}

void del(int x)
{
    int t=a[x];
    p1=p1-cnt[t]*cnt[t]+cnt[t];
    cnt[t]--;
    p1=p1+cnt[t]*cnt[t]-cnt[t];
}

int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        int sz=sqrt(n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            pos[i]=i/sz;
        }
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d",&Q[i].l,&Q[i].r);
            Q[i].id=i;
        }
        sort(Q+1,Q+1+m,cmp);
        memset(cnt,0,sizeof(cnt));
        L=1;
        R=0;
        p1=0;
        p2=0;
        for(int i=1;i<=m;i++)
        {
            while(L<Q[i].l)
            {
                del(L);
                L++;
            }
            while(L>Q[i].l)
            {
                L--;
                add(L);
            }
            while(R<Q[i].r)
            {
                R++;
                add(R);
            }
            while(R>Q[i].r)
            {
                del(R);
                R--;
            }
            if(p1==0)
            {
                up[Q[i].id]=0;
                down[Q[i].id]=1;
            }
            else
            {
                p2=(ll)(R-L+1)*(R-L);
                tmp=__gcd(p1,p2);
                up[Q[i].id]=p1/tmp;
                down[Q[i].id]=p2/tmp;
            }
        }
        for(int i=1;i<=m;i++)
            printf("%lld/%lld\n",up[i],down[i]);
    }
    return 0;
}
内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值