python中savgol_filter的详细解释

Savitzky-Golay滤波器是一种用于光谱预处理的滤波方法,通过窗口内的多项式拟合实现平滑效果。window_length参数越大,平滑度越高;polyorder参数越大,曲线拟合更接近原始数据,但过大可能导致高频信息丢失。文章通过代码示例展示了这两个参数对平滑曲线的影响。

savgol_filter简介

Savitzky-Golay滤波器最初由Savitzky和Golay于1964年提出,是光谱预处理中常用滤波方法,它的核心思想是对一定长度窗口内的数据点进行k阶多项式拟合,从而得到拟合后的结果。对它进行离散化处理后后,S-G 滤波其实是一种移动窗口的加权平均算法,但是其加权系数不是简单的常数窗口,而是通过在滑动窗口内对给定高阶多项式的最小二乘拟合得出。这种滤波器最大的特点在于在滤除噪声的同时可以确保信号的形状、宽度不变。

它对信号的操作是在时域内对window_length内的数据进行多项式拟合。而从频域上看,这种拟合实际就是通过了低频数据,而滤掉了高频数据。

这种滤波其实是一种移动窗口的加权平均算法,但是其加权系数不是简单的常数窗口,而是通过在滑动窗口内对给定高阶多项式的最小二乘拟合得出。

总之,平滑滤波是光谱分析中常用的预处理方法之一。用Savitzky-Golay方法进行平滑滤波,可以提高光谱的平滑性,并降低噪音的干扰。S-G平滑滤波的效果,随着选取窗宽不同而不同,可以满足多种不同场合的需求。

savgol_filter原理

表达式为:
scipy.signal.savgol_filter(x, window_length, polyorder)

详细表达式和定义可以查看下面链接:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html

参数的含义:

1、x为要滤波的信号;

2、window_length即窗口长度;取值为奇数且不能超过len(x)。它越大,则平滑效果越明显;越小,则更贴近原始曲线。

3、polyorder为多项式拟合的阶数。它越小,则平滑效果越明显;越大,则更贴近原始曲线。

参数window_length对平滑的效果

import os
import matplotlib.pyplot as plt
import scipy.signal
import numpy as np

def main():
    # 项目目录
    dir = "D:\\a_user_file\\8_data"
    filename = '1.csv'
    path = os.path.join(dir, filename)
    with open(path, "r") as fname:
        data = fname.read()
        lines = data.split("\n")
        lines = lines[1:5000]
        raw_data = []
        for i in range(len(lines))
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dream_Bri

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值