这个方法提供指数级衰减,用来让模型在训练后期,变化的精度高一些
When training a model, it is often recommended to lower the learning rate asthe training progresses.
This function applies an exponential decay functionto a provided initial learning rate. It requires a
global_step value tocompute the decayed learning rate. You can just pass a TensorFlow variablethat
you increment at each training step.
exponential_decay(
learning_rate,
global_step,
decay_steps,
decay_rate,
staircase=False,
name=None
)公式:
decayed_learning_rate = learning_rate *
decay_rate ^ (global_step / decay_steps)
If the argument staircase is True, then global_step / decay_steps is aninteger division and the decayed learning rate follows a staircase function.
如果staircase是True,那么 global_step/decay_steps会是整数。
例子:
learning_rate = 0.1
decay_rate = 0.96
decay_steps = 1000
global_step = 1
rate = 0.0999959179
///////////////
learning_rate = 0.1
decay_rate = 0.96
decay_steps = 1000
global_step = 900
rate = 0.0963926921
本文介绍了一种在深度学习中使用的指数衰减学习率方法,该方法能够随着训练的进行而逐渐降低学习率,有助于提高模型训练后期的精度。文章详细解释了如何使用此方法,并给出了具体的数学公式和实例。
1万+

被折叠的 条评论
为什么被折叠?



