HDU 2254(数论,矩阵)

本文详细介绍了比尔盖茨举办的一场特别奥运会,参赛者需计算从一个城市到另一个城市在特定天数内的行走路径数量,以此获得金牌。文章探讨了路径计算方法及解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

奥运

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 376    Accepted Submission(s): 77

Problem Description
北京迎来了第一个奥运会,我们的欢呼声响彻中国大地,所以今年的奥运金牌 day day up!
比尔盖兹坐上鸟巢里,手里摇着小纸扇,看的不亦乐乎,被俺们健儿的顽强拼搏的精神深深的感动了。反正我的钱也多的没地方放了,他对自己说,我自己也来举办一个奥运会,看谁的更火。不过他的奥运会很特别:
1 参加人员必须是中国人;
2 至少会加法运算(因为要计算本人获得的金牌数)
他知道中国有很多的名胜古迹,他知道自己在t1 到 t2天内不可能把所有的地方都玩遍,所以他决定指定两个地方v1,v2,如果参赛员能计算出在t1到t2天(包括t1,t2)内从v1到v2共有多少种走法(每条道路走需要花一天的时间,且不能在某个城市停留,且t1=0时的走法数为0),那么他就会获得相应数量的金牌,城市的总数<=30,两个城市间可以有多条道路
,每条都视为是不同的。
 

 

Input
本题多个case,每个case:
输入一个数字n表示有n条道路 0<n<10000
接下来n行每行读入两个数字 p1,p2 表示城市p1到p2有道路,并不表示p2到p1有道路 (0<=p1,p2<2^32)
输入一个数字k表示有k个参赛人员
接下来k行,每行读入四个数据v1,v2,t1,t2 (0<=t1,t2<10000)
 

 

Output
对于每组数据中的每个参赛人员输出一个整数表示他获得的金牌数(mod 2008)
 

 

Sample Input
6 1 2 1 3 2 3 3 2 3 1 2 1 3 1 2 0 0 1 2 1 100 4 8 3 50
 

 

Sample Output
0 1506 0

### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值