凸优化学习笔记3

Chapter 4 Convex optimization problems

《Convex Optimization》一书一直到第4章才算正式处理凸优化问题,第2章和第3章分别介绍了凸集和凸函数的一些知识,而凸优化问题的组成要素就是凸集和凸函数,重点是面对自己专业领域的一个优化问题,如何想办法将其转换为凸优化问题。

4.1 Optimization problems

优化问题的一般描述如下:
minimizef0(x)subject  to      fi(x)≤0,i=1,…,mhi(x)=0,i=1,…,p \begin{aligned} \mathrm{minimize}\quad &f_0(x)\\ \mathrm{subject\;to}\;\;\;&f_i(x)\leq 0,\quad i=1,\ldots,m\\ &h_i(x)=0,\quad i=1,\ldots,p \end{aligned} minimizesubjecttof0(x)fi(x)0,i=1,,mhi(x)=0,i=1,,p

  • 相关定义:
    • x∈Rnx\in\mathbb{R}^nxRn: optimization variable
    • f0:Rn→Rf_0:\mathbb{R}^n\rightarrow\mathbb{R}f0:RnR: objective function/cost function
    • fi(x)≤0f_i(x)\leq 0fi(x)0: inequality constraints; fi(x):Rn→Rf_i(x):\mathbb{R}^n\rightarrow\mathbb{R}fi(x):RnR: inequality constraint functions
    • hi(x)=0h_i(x)=0hi(x)=0: equality constraints; hi(x):Rn→Rh_i(x):\mathbb{R}^n\rightarrow\mathbb{R}hi(x):RnR: equality constraint functions
    • D=⋂i=0mdomfi∩⋂i=1pdomhi\mathcal{D}=\displaystyle{\bigcap_{i=0}^m}\mathbf{dom}f_i\cap\displaystyle{\bigcap_{i=1}^p}\mathbf{dom}h_iD=i=0mdomfii=1pdomhi: domain of the optimization problem
    • x∈Dx\in\mathcal{D}xD, fi(x)≤0,i=1,…,mf_i(x)\leq 0,i=1,\ldots,mfi(x)0,i=1,,m, hi(x)=0,i=1,…,ph_i(x)=0,i=1,\ldots,phi(x)=0,i=1,,p: feasible point; the set of all feasible points: feasible set/constrained set
    • p∗=inf⁡{f0(x)∣fi(x)≤0,i=1,…,m,hi(x)=0,i=1,…,p}p^*=\inf\{f_0(x)\vert f_i(x)\leq 0,i=1,\ldots,m,h_i(x)=0, i=1,\ldots,p\}p=inf{f0(x)fi(x)0,i=1,,m,hi(x)=0,i=1,,p}: optimal value
    • x∗x^*x is feasible and f0(x∗)=p∗f_0(x^*)=p^*f0(x)=p: optimal point; Xopt={x∣fi(x)≤0,i=1,…,m,hi(x)=0,i=1,…,p,f0(x)=p∗}X_\mathrm{opt}=\{x\vert f_i(x)\leq 0,i=1,\ldots,m,h_i(x)=0,i=1,\ldots,p,f_0(x)=p^*\}Xopt={xfi(x)0,i=1,,m,hi(x)=0,i=1,,p,f0(x)=p}: optimal set
    • xxx is feasible with f0(x)≤p∗+ϵf_0(x)\leq p^*+\epsilonf0(x)p+ϵ, ϵ>0\epsilon>0ϵ>0: ϵ\epsilonϵ-suboptimal; the set of all ϵ\epsilonϵ-suboptimal points: ϵ\epsilonϵ-suboptimal set
    • xxx is feasible, R>0R>0R>0, f0(x)=inf⁡{f0(z)∣fi(z)≤0,i=1,…,m,hi(z)=0,i=1,…,p,∥z−x∥≤R}f_0(x)=\inf\{f_0(z)\vert f_i(z)\leq 0,i=1,\ldots,m,h_i(z)=0,i=1,\ldots,p,\Vert z-x\Vert\leq R\}f0(x)=inf{f0(z)fi(z)0,i=1,,m,hi(z)=0,i=1,,p,zxR}: locally optimal
4.2 Convex optimization

凸优化问题的一般描述如下:
minimizef0(x)subject  to      fi(x)≤0,i=1,…,maiTx=bi,i=1,…,p \begin{aligned} \mathrm{minimize}\quad &f_0(x)\\ \mathrm{subject\;to}\;\;\;&f_i(x)\leq 0,\quad i=1,\ldots,m\\ &a_i^\mathrm{T}x=b_i,\quad i=1,\ldots,p \end{aligned} minimizesubjecttof0(x)fi(x)0,i=1,,maiTx=bi,i=1,,p

其中,f0,…,fmf_0,\ldots,f_mf0,,fm为凸函数,

  • any locally point is also globally optimal
  • if f0f_0f0 is differentiable, XXX denotes the feasible set, then xxx is optimal ⇔\Leftrightarrow x∈Xx\in XxX, ∇f0T(x)(y−x)≥0\nabla f_0^\mathrm{T}(x)(y-x)\geq 0f0T(x)(yx)0 for all y∈Xy\in XyX; if m=p=0m=p=0m=p=0, then ∇f0(x)=0\nabla f_0(x)=0f0(x)=0
  • 拟凸优化:f0f_0f0 is quasiconvex
    • if f0f_0f0 is differentiable, x∈Xx\in XxX, ∇f0T(x)(y−x)>0\nabla f_0^\mathrm{T}(x)(y-x)>0f0T(x)(yx)>0 for all y∈X\{x}⇒y\in X\backslash\{x\}\RightarrowyX\{x} xxx is optimal
    • 利用f0(x)⇔ϕt(x)≤0f_0(x)\Leftrightarrow\phi_t(x)\leq 0f0(x)ϕt(x)0转为convex feasibility problem
4.3 Linear optimization problems

general form
minimizecTx+dsubject  to      Gx⪯hAx=b \begin{aligned} \mathrm{minimize}\quad &c^\mathrm{T}x+d\\ \mathrm{subject\;to}\;\;\;&Gx\preceq h\\ &Ax=b \end{aligned} minimizesubjecttocTx+dGxhAx=b

其中,G∈Rm×nG\in\mathbb{R}^{m\times n}GRm×nA∈Rp×nA\in\mathbb{R}^{p\times n}ARp×n

standard form
minimizecTxsubject  to      Ax=bx⪰0 \begin{aligned} \mathrm{minimize}\quad &c^\mathrm{T}x\\ \mathrm{subject\;to}\;\;\;&Ax=b\\ &x\succeq 0 \end{aligned} minimizesubjecttocTxAx=bx0
general formstandard form

  • introduce slack variables sis_isi:
    minimizecTx+dsubject  to      Gx+s=hAx=bs⪰0 \begin{aligned} \mathrm{minimize}\quad &c^\mathrm{T}x+d\\ \mathrm{subject\;to}\;\;\;&Gx+s= h\\ &Ax=b\\ &s\succeq 0 \end{aligned} minimizesubjecttocTx+dGx+s=hAx=bs0

  • x=x+−x−x=x^+-x^-x=x+xx+,x−⪰0x^+,x^-\succeq 0x+,x0:
    minimizecTx+−cTx−+dsubject to      Gx+−Gx−+s=hAx+−Ax−=bx+⪰0, x−⪰0, s⪰0 \begin{aligned} \text{minimize}\quad &c^\mathrm{T}x^+-c^\mathrm{T}x^-+d\\ \text{subject to}\;\;\;&Gx^+-Gx^-+s= h\\ &Ax^+-Ax^-=b\\ &x^+\succeq 0,\ x^-\succeq 0,\ s\succeq 0 \end{aligned} minimizesubject tocTx+cTx+dGx+Gx+s=hAx+Ax=bx+0, x0, s0

4.4 Quadratic optimization problems

quadratic program (QP)
minimize12xTPx+qTx+rsubject to      Gx⪯hAx=b \begin{aligned} \text{minimize}\quad &\frac{1}{2}x^\mathrm{T}Px+q^\mathrm{T}x+r\\ \text{subject to}\;\;\;&Gx\preceq h\\ &Ax=b \end{aligned} minimizesubject to21xTPx+qTx+rGxhAx=b

其中,P∈S+nP\in\mathbb{S}_+^nPS+n

quadratically constrained quadratic program (QCQP)
minimize12xTP0x+q0Tx+r0subject to      12xTPix+qiTx+ri≤0,i=1,…,mAx=b \begin{aligned} \text{minimize}\quad &\frac{1}{2}x^\mathrm{T}P_0x+q_0^\mathrm{T}x+r_0\\ \text{subject to}\;\;\;&\frac{1}{2}x^\mathrm{T}P_ix+q_i^\mathrm{T}x+r_i\leq 0,\quad i=1,\ldots,m\\ &Ax=b \end{aligned} minimizesubject to21xTP0x+q0Tx+r021xTPix+qiTx+ri0,i=1,,mAx=b

其中,Pi∈S+nP_i\in\mathbb{S}_+^nPiS+ni=0,1,…,mi=0,1,\ldots,mi=0,1,,m

second-order cone program (SOCP)
minimizefTxsubject to      ∥Aix+bi∥2≤ciTx+di,i=1,…,mFx=g \begin{aligned} \text{minimize}\quad &f^\mathrm{T}x\\ \text{subject to}\;\;\;&\Vert A_ix+b_i\Vert_2\leq c_i^\mathrm{T}x+d_i,\quad i=1,\ldots,m\\ &Fx=g \end{aligned} minimizesubject tofTxAix+bi2ciTx+di,i=1,,mFx=g

4.5 Geometric programming
  • monomial function: f(x)=cx1a1x2a2⋯xnanf(x)=cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}f(x)=cx1a1x2a2xnanc>0c>0c>0ai∈Ra_i\in\mathbb{R}aiRdomf=R++n\textbf{dom}f=\mathbb{R}_{++}^ndomf=R++n

  • posynomial function: f(x)=∑k=1Kckx1a1kx2a2k⋯xnankf(x)=\displaystyle\sum_{k=1}^Kc_kx_1^{a_{1k}}x_2^{a_{2k}}\cdots x_n^{a_{nk}}f(x)=k=1Kckx1a1kx2a2kxnankck>0c_k>0ck>0

  • geometric program (GP)
    minimizef0(x)subject to      fi(x)≤1,i=1,…,mhi(x)=1,i=1,…,p \begin{aligned} \text{minimize}\quad &f_0(x)\\ \text{subject to}\;\;\;&f_i(x)\leq 1,\quad i=1,\ldots,m\\ &h_i(x)=1,\quad i=1,\ldots,p \end{aligned} minimizesubject tof0(x)fi(x)1,i=1,,mhi(x)=1,i=1,,p

其中,f0,…,fmf_0,\ldots,f_mf0,,fm为posynomials, h1,…,hph_1,\ldots,h_ph1,,hp为monomials。通过取对数和变量替换可转换为凸优化问题。

4.6节介绍的Generalized inequality constraints和4.7节介绍的Vector optimization等需要用到的时候再详细研究。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值