Chapter 4 Convex optimization problems
《Convex Optimization》一书一直到第4章才算正式处理凸优化问题,第2章和第3章分别介绍了凸集和凸函数的一些知识,而凸优化问题的组成要素就是凸集和凸函数,重点是面对自己专业领域的一个优化问题,如何想办法将其转换为凸优化问题。
4.1 Optimization problems
优化问题的一般描述如下:
minimizef0(x)subject to fi(x)≤0,i=1,…,mhi(x)=0,i=1,…,p
\begin{aligned}
\mathrm{minimize}\quad &f_0(x)\\
\mathrm{subject\;to}\;\;\;&f_i(x)\leq 0,\quad i=1,\ldots,m\\
&h_i(x)=0,\quad i=1,\ldots,p
\end{aligned}
minimizesubjecttof0(x)fi(x)≤0,i=1,…,mhi(x)=0,i=1,…,p
- 相关定义:
- x∈Rnx\in\mathbb{R}^nx∈Rn: optimization variable
- f0:Rn→Rf_0:\mathbb{R}^n\rightarrow\mathbb{R}f0:Rn→R: objective function/cost function
- fi(x)≤0f_i(x)\leq 0fi(x)≤0: inequality constraints; fi(x):Rn→Rf_i(x):\mathbb{R}^n\rightarrow\mathbb{R}fi(x):Rn→R: inequality constraint functions
- hi(x)=0h_i(x)=0hi(x)=0: equality constraints; hi(x):Rn→Rh_i(x):\mathbb{R}^n\rightarrow\mathbb{R}hi(x):Rn→R: equality constraint functions
- D=⋂i=0mdomfi∩⋂i=1pdomhi\mathcal{D}=\displaystyle{\bigcap_{i=0}^m}\mathbf{dom}f_i\cap\displaystyle{\bigcap_{i=1}^p}\mathbf{dom}h_iD=i=0⋂mdomfi∩i=1⋂pdomhi: domain of the optimization problem
- x∈Dx\in\mathcal{D}x∈D, fi(x)≤0,i=1,…,mf_i(x)\leq 0,i=1,\ldots,mfi(x)≤0,i=1,…,m, hi(x)=0,i=1,…,ph_i(x)=0,i=1,\ldots,phi(x)=0,i=1,…,p: feasible point; the set of all feasible points: feasible set/constrained set
- p∗=inf{f0(x)∣fi(x)≤0,i=1,…,m,hi(x)=0,i=1,…,p}p^*=\inf\{f_0(x)\vert f_i(x)\leq 0,i=1,\ldots,m,h_i(x)=0, i=1,\ldots,p\}p∗=inf{f0(x)∣fi(x)≤0,i=1,…,m,hi(x)=0,i=1,…,p}: optimal value
- x∗x^*x∗ is feasible and f0(x∗)=p∗f_0(x^*)=p^*f0(x∗)=p∗: optimal point; Xopt={x∣fi(x)≤0,i=1,…,m,hi(x)=0,i=1,…,p,f0(x)=p∗}X_\mathrm{opt}=\{x\vert f_i(x)\leq 0,i=1,\ldots,m,h_i(x)=0,i=1,\ldots,p,f_0(x)=p^*\}Xopt={x∣fi(x)≤0,i=1,…,m,hi(x)=0,i=1,…,p,f0(x)=p∗}: optimal set
- xxx is feasible with f0(x)≤p∗+ϵf_0(x)\leq p^*+\epsilonf0(x)≤p∗+ϵ, ϵ>0\epsilon>0ϵ>0: ϵ\epsilonϵ-suboptimal; the set of all ϵ\epsilonϵ-suboptimal points: ϵ\epsilonϵ-suboptimal set
- xxx is feasible, R>0R>0R>0, f0(x)=inf{f0(z)∣fi(z)≤0,i=1,…,m,hi(z)=0,i=1,…,p,∥z−x∥≤R}f_0(x)=\inf\{f_0(z)\vert f_i(z)\leq 0,i=1,\ldots,m,h_i(z)=0,i=1,\ldots,p,\Vert z-x\Vert\leq R\}f0(x)=inf{f0(z)∣fi(z)≤0,i=1,…,m,hi(z)=0,i=1,…,p,∥z−x∥≤R}: locally optimal
4.2 Convex optimization
凸优化问题的一般描述如下:
minimizef0(x)subject to fi(x)≤0,i=1,…,maiTx=bi,i=1,…,p
\begin{aligned}
\mathrm{minimize}\quad &f_0(x)\\
\mathrm{subject\;to}\;\;\;&f_i(x)\leq 0,\quad i=1,\ldots,m\\
&a_i^\mathrm{T}x=b_i,\quad i=1,\ldots,p
\end{aligned}
minimizesubjecttof0(x)fi(x)≤0,i=1,…,maiTx=bi,i=1,…,p
其中,f0,…,fmf_0,\ldots,f_mf0,…,fm为凸函数,
- any locally point is also globally optimal
- if f0f_0f0 is differentiable, XXX denotes the feasible set, then xxx is optimal ⇔\Leftrightarrow⇔ x∈Xx\in Xx∈X, ∇f0T(x)(y−x)≥0\nabla f_0^\mathrm{T}(x)(y-x)\geq 0∇f0T(x)(y−x)≥0 for all y∈Xy\in Xy∈X; if m=p=0m=p=0m=p=0, then ∇f0(x)=0\nabla f_0(x)=0∇f0(x)=0
- 拟凸优化:f0f_0f0 is quasiconvex
- if f0f_0f0 is differentiable, x∈Xx\in Xx∈X, ∇f0T(x)(y−x)>0\nabla f_0^\mathrm{T}(x)(y-x)>0∇f0T(x)(y−x)>0 for all y∈X\{x}⇒y\in X\backslash\{x\}\Rightarrowy∈X\{x}⇒ xxx is optimal
- 利用f0(x)⇔ϕt(x)≤0f_0(x)\Leftrightarrow\phi_t(x)\leq 0f0(x)⇔ϕt(x)≤0转为convex feasibility problem
4.3 Linear optimization problems
general form
minimizecTx+dsubject to Gx⪯hAx=b
\begin{aligned}
\mathrm{minimize}\quad &c^\mathrm{T}x+d\\
\mathrm{subject\;to}\;\;\;&Gx\preceq h\\
&Ax=b
\end{aligned}
minimizesubjecttocTx+dGx⪯hAx=b
其中,G∈Rm×nG\in\mathbb{R}^{m\times n}G∈Rm×n,A∈Rp×nA\in\mathbb{R}^{p\times n}A∈Rp×n。
standard form
minimizecTxsubject to Ax=bx⪰0
\begin{aligned}
\mathrm{minimize}\quad &c^\mathrm{T}x\\
\mathrm{subject\;to}\;\;\;&Ax=b\\
&x\succeq 0
\end{aligned}
minimizesubjecttocTxAx=bx⪰0
从general form到standard form
-
introduce slack variables sis_isi:
minimizecTx+dsubject to Gx+s=hAx=bs⪰0 \begin{aligned} \mathrm{minimize}\quad &c^\mathrm{T}x+d\\ \mathrm{subject\;to}\;\;\;&Gx+s= h\\ &Ax=b\\ &s\succeq 0 \end{aligned} minimizesubjecttocTx+dGx+s=hAx=bs⪰0 -
x=x+−x−x=x^+-x^-x=x+−x−,x+,x−⪰0x^+,x^-\succeq 0x+,x−⪰0:
minimizecTx+−cTx−+dsubject to Gx+−Gx−+s=hAx+−Ax−=bx+⪰0, x−⪰0, s⪰0 \begin{aligned} \text{minimize}\quad &c^\mathrm{T}x^+-c^\mathrm{T}x^-+d\\ \text{subject to}\;\;\;&Gx^+-Gx^-+s= h\\ &Ax^+-Ax^-=b\\ &x^+\succeq 0,\ x^-\succeq 0,\ s\succeq 0 \end{aligned} minimizesubject tocTx+−cTx−+dGx+−Gx−+s=hAx+−Ax−=bx+⪰0, x−⪰0, s⪰0
4.4 Quadratic optimization problems
quadratic program (QP)
minimize12xTPx+qTx+rsubject to Gx⪯hAx=b
\begin{aligned}
\text{minimize}\quad &\frac{1}{2}x^\mathrm{T}Px+q^\mathrm{T}x+r\\
\text{subject to}\;\;\;&Gx\preceq h\\
&Ax=b
\end{aligned}
minimizesubject to21xTPx+qTx+rGx⪯hAx=b
其中,P∈S+nP\in\mathbb{S}_+^nP∈S+n。
quadratically constrained quadratic program (QCQP)
minimize12xTP0x+q0Tx+r0subject to 12xTPix+qiTx+ri≤0,i=1,…,mAx=b
\begin{aligned}
\text{minimize}\quad &\frac{1}{2}x^\mathrm{T}P_0x+q_0^\mathrm{T}x+r_0\\
\text{subject to}\;\;\;&\frac{1}{2}x^\mathrm{T}P_ix+q_i^\mathrm{T}x+r_i\leq 0,\quad i=1,\ldots,m\\
&Ax=b
\end{aligned}
minimizesubject to21xTP0x+q0Tx+r021xTPix+qiTx+ri≤0,i=1,…,mAx=b
其中,Pi∈S+nP_i\in\mathbb{S}_+^nPi∈S+n,i=0,1,…,mi=0,1,\ldots,mi=0,1,…,m。
second-order cone program (SOCP)
minimizefTxsubject to ∥Aix+bi∥2≤ciTx+di,i=1,…,mFx=g
\begin{aligned}
\text{minimize}\quad &f^\mathrm{T}x\\
\text{subject to}\;\;\;&\Vert A_ix+b_i\Vert_2\leq c_i^\mathrm{T}x+d_i,\quad i=1,\ldots,m\\
&Fx=g
\end{aligned}
minimizesubject tofTx∥Aix+bi∥2≤ciTx+di,i=1,…,mFx=g
4.5 Geometric programming
-
monomial function: f(x)=cx1a1x2a2⋯xnanf(x)=cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}f(x)=cx1a1x2a2⋯xnan,c>0c>0c>0,ai∈Ra_i\in\mathbb{R}ai∈R,domf=R++n\textbf{dom}f=\mathbb{R}_{++}^ndomf=R++n
-
posynomial function: f(x)=∑k=1Kckx1a1kx2a2k⋯xnankf(x)=\displaystyle\sum_{k=1}^Kc_kx_1^{a_{1k}}x_2^{a_{2k}}\cdots x_n^{a_{nk}}f(x)=k=1∑Kckx1a1kx2a2k⋯xnank,ck>0c_k>0ck>0
-
geometric program (GP)
minimizef0(x)subject to fi(x)≤1,i=1,…,mhi(x)=1,i=1,…,p \begin{aligned} \text{minimize}\quad &f_0(x)\\ \text{subject to}\;\;\;&f_i(x)\leq 1,\quad i=1,\ldots,m\\ &h_i(x)=1,\quad i=1,\ldots,p \end{aligned} minimizesubject tof0(x)fi(x)≤1,i=1,…,mhi(x)=1,i=1,…,p
其中,f0,…,fmf_0,\ldots,f_mf0,…,fm为posynomials, h1,…,hph_1,\ldots,h_ph1,…,hp为monomials。通过取对数和变量替换可转换为凸优化问题。
4.6节介绍的Generalized inequality constraints和4.7节介绍的Vector optimization等需要用到的时候再详细研究。
1591

被折叠的 条评论
为什么被折叠?



