D. The Fair Nut and the Best Path(树形dp)

本文详细解析了Codeforces D题“公平的Nut与最佳路径”,介绍了如何使用树形DP求解任意两点间路径和的最大值,包括状态定义、状态转移方程及代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. The Fair Nut and the Best Path

http://codeforces.com/contest/1084/problem/D

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The Fair Nut is going to travel to the Tree Country, in which there are n

cities. Most of the land of this country is covered by forest. Furthermore, the local road system forms a tree (connected graph without cycles). Nut wants to rent a car in the city u and go by a simple path to city v

. He hasn't determined the path, so it's time to do it. Note that chosen path can consist of only one vertex.

A filling station is located in every city. Because of strange law, Nut can buy only wi

liters of gasoline in the i

-th city. We can assume, that he has infinite money. Each road has a length, and as soon as Nut drives through this road, the amount of gasoline decreases by length. Of course, Nut can't choose a path, which consists of roads, where he runs out of gasoline. He can buy gasoline in every visited city, even in the first and the last.

He also wants to find the maximum amount of gasoline that he can have at the end of the path. Help him: count it.

Input

The first line contains a single integer n

(1≤n≤3⋅105

) — the number of cities.

The second line contains n

integers w1,w2,…,wn (0≤wi≤109

) — the maximum amounts of liters of gasoline that Nut can buy in cities.

Each of the next n−1

lines describes road and contains three integers u, v, c (1≤u,v≤n, 1≤c≤109, u≠v), where u and v — cities that are connected by this road and c

 — its length.

It is guaranteed that graph of road connectivity is a tree.

Output

Print one number — the maximum amount of gasoline that he can have at the end of the path.

Examples

Input

Copy

3
1 3 3
1 2 2
1 3 2

Output

Copy

3

Input

Copy

5
6 3 2 5 0
1 2 10
2 3 3
2 4 1
1 5 1

Output

Copy

7

Note

The optimal way in the first example is 2→1→3

.

The optimal way in the second example is 2→4

.

题意:

就是点是可以加油的,然后线上是耗油的。问任意两点之间的所有路径的和最大的值。

思路:经典的树形dp。

用dp[u]表示以u为起点的最大值,dp_z[u]代表,u作为中间点的最大值。那么状态转移方程自然就出来了:

对于点u,从所有儿子中找到一个最大的dp[ son1 ],次大的dp[ son2 ],
dp_z[ u ]=a[ u ]+dp[ son1 ]+dist( u,son1 )+dp[ son2 ]+dist( u,son2 ),
dp[ u ]=a[ u ]+dp[ son1 ]+dist( u,son1 )

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=300000+100;
typedef long long LL;
vector<int>G[maxn],dist[maxn];
LL a[maxn],dp[maxn],dp_z[maxn];
int w;
int u,v;
LL ans;
void dfs(int u,int fa){
    LL mx1=0;///最大
    LL mx2=0;///次大
    ///dp[u]=a[u];///u作为起点
    ///dp_z[u]=a[u];///作为中间点
    for(int i=0;i<G[u].size();i++){
        int v=G[u][i];
        if(v==fa)
            continue;
        dfs(v,u);
        if(dp[v]-dist[u][i]>mx1){
            mx2=mx1;
            mx1=dp[v]-dist[u][i];
        }
        else if(dp[v]-dist[u][i]==mx1){
            mx2=mx1;
        }
        else{
            if(dp[v]-dist[u][i]>mx2)
                mx2=dp[v]-dist[u][i];
        }///更新最大和次大值
    }
    dp_z[u]=a[u]+mx1+mx2;
    dp[u]=a[u]+mx1;
    ans=max(dp_z[u],ans);
    ans=max(dp[u],ans);
}
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF){
            ans=0;
        for(int i=1;i<=n;i++){
            scanf("%lld",&a[i]);
        }
        for(int i=1;i<=n-1;i++){
            scanf("%d%d%d",&u,&v,&w);
            G[u].push_back(v);
            G[v].push_back(u);
            dist[u].push_back(w);
            dist[v].push_back(w);
        }
        dfs(1,-1);
        cout<<ans<<endl;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值