In Touch
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 3217 Accepted Submission(s): 827
Problem Description
There are n soda living in a straight line. soda are numbered by 1,2,…,n from left to right. The distance between two adjacent soda is 1 meter. Every soda has a teleporter. The teleporter of i-th soda can teleport to the soda whose distance between i-th soda is no less than li and no larger than ri. The cost to use i-th soda's teleporter is ci.
The 1-st soda is their leader and he wants to know the minimum cost needed to reach i-th soda (1≤i≤n).
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤2×105), the number of soda.
The second line contains n integers l1,l2,…,ln. The third line contains n integers r1,r2,…,rn. The fourth line contains n integers c1,c2,…,cn. (0≤li≤ri≤n,1≤ci≤109)
Output
For each case, output n integers where i-th integer denotes the minimum cost needed to reach i-th soda. If 1-st soda cannot reach i-the soda, you should just output -1.
Sample Input
1 5 2 0 0 0 1 3 1 1 0 5 1 1 1 1 1
Sample Output
0 2 1 1 -1
Hint
If you need a larger stack size, please use #pragma comment(linker, "/STACK:102400000,102400000") and submit your solution using C++.
Author
zimpha@zju
Source
2015 Multi-University Training Contest 6
Recommend
wange2014 | We have carefully selected several similar problems for you: 6343 6342 6341 6340 6339
题意:题意是从给出n个点,第一行是l[i],第二行是r[i],意思是i点可以到达 距i点的距离在【l,r】以内的所有点,第三行是c[i],意思是到达i点需要花费c。问从第一个点到1—n的点,分别求一下最短路径。
由数据范围如此庞大可以知道,直接建图不是好方法。
然后我们就去利用dij算法,和并查集,那么dist[i]表示从1到 i 的花费再加上点 i 的花费,这样每个点就只会被更新一次,更新后在以后就不会再次被更新了,这里用到并查集把已经更新的点得father指向还没被更新的点。简单地说,就是从第一个点开始更新, 更新过的点缩成一个点, 因为在Dijkstra里 每次取出的都是最小的distance,(用优先队列维护) 所以更新过的点 后面肯定不需要再次更新。更新一个点后加入堆中, 因为通过这个点可能更新别的点。
ps:这道题自己还没敲,但是觉得思想很好,应该记住并且灵活运用!!
参考博客:
https://blog.youkuaiyun.com/u014422052/article/details/47376273
也可以用线段树做:
https://blog.youkuaiyun.com/hnust_derker/article/details/79343341
代码:
#include<bits/stdc++.h>
typedef __int64 ll;
using namespace std;
const ll INF = 1LL << 60; //要大点
#define mod 1000000009
const int maxn = 200010;
const int MAXN = 2005;
const int MAXM = 200010;
const int N = 1005;
typedef pair<ll,int>Pir;
ll L[maxn],R[maxn],C[maxn],dist[maxn];
int n,father[maxn];
void init()
{
for (int i=0;i<=n+5;i++)
{
father[i]=i;
dist[i]=INF;
}
}
int find_father(int x)
{
if (x!=father[x])
father[x]=find_father(father[x]);
return father[x];
}
void solve()
{
dist[1]=C[1];
priority_queue<Pir,vector<Pir>,greater<Pir> >Q;
Q.push(make_pair(dist[1],1));
while (!Q.empty())
{
Pir st=Q.top(); Q.pop();
int u=st.second;
/// cout<<u<<"&&&"<<endl;
for (int i=-1;i<=1;i+=2)
{
int l=u+i*L[u];
int r=u+i*R[u];
if (l>r) swap(l,r);
l=max(1,l);
l=min(l,n+1);
if (l>r) continue;
for (int v=l;;v++)
{
v=find_father(v);
if (v<=0||v>n||v>r) break;
if (dist[v]>dist[u]+C[v])
{
dist[v]=dist[u]+C[v];
Q.push(make_pair(dist[v],v));
}
father[find_father(v)]=find_father(v+1);
}
}
}
printf("0");
for (int i=2;i<=n;i++)
{
if (dist[i]>=INF)
printf(" -1");
else
printf(" %I64d",dist[i]-C[i]);
}
printf("\n");
}
int main()
{
int i,j,t;
scanf("%d",&t);
while (t--)
{
scanf("%d",&n);
for (i=1;i<=n;i++)
scanf("%I64d",&L[i]);
for (i=1;i<=n;i++)
scanf("%I64d",&R[i]);
for (i=1;i<=n;i++)
scanf("%I64d",&C[i]);
init();
solve();
}
return 0;
}