转载自:http://blog.youkuaiyun.com/bcwan_/article/details/51533773
第一种方法:
将n!表示成10的次幂,即n!=10^M 则不小于M的最小整数就是 n!的位数,对该式两边取对数,有 M =log10^n!
即: M = log10^1+log10^2+log10^3...+log10^n 循环求和,就能算得M值,该M是n!的精确位数
- #include<iostream>
- #include<cstdio>
- #include<algorithm>
- #include<cmath>
- using namespace std;
- int main()
- {
- int n,i;
- double d;
- while(scanf("%d",&n)!=EOF){
- d=0;
- for (i=1;i<=n;i++){
- d+=(double)log10(i);
- }
- printf("%d\n",(int)d+1);
- }
- return 0;
- }
第二种方法:直接套斯特灵公式 res=(long)( (log10(sqrt(4.0*acos(0.0)*n)) + n*(log10(n)-log10(exp(1.0)))) + 1 );
不过需要处理下n=1和n=0的情况。
- #include<iostream>
- #include<cstdio>
- #include<cstring>
- #include<algorithm>
- #include<cmath>
- using namespace std;
- int main()
- {
- long res;
- int n;
- cin>>n;
- if(n<=1)res=1;
- else
- res=(long)((log10(sqrt(4.0*acos(0.0)*n))+n*(log10(n)-log10(exp(1.0))))+1);
- cout<<res<<endl;
- return 0;
- }