Codeforces Round #292 (Div. 2)

Drazil邀请玩家解决三个数学难题:规划最优约会路径、通过社交活动让所有人快乐、以及构造最大可能的数字。这些问题考验了玩家的逻辑思维和算法能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    目标完成、、

   

A. Drazil and Date

Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's home is located in point (0, 0) and Varda's home is located in point (a, b). In each step, he can move in a unit distance in horizontal or vertical direction. In other words, from position (x, y) he can go to positions (x + 1, y), (x - 1, y), (x, y + 1) or (x, y - 1).

Unfortunately, Drazil doesn't have sense of direction. So he randomly chooses the direction he will go to in each step. He may accidentally return back to his house during his travel. Drazil may even not notice that he has arrived to (a, b) and continue travelling.

Luckily, Drazil arrived to the position (a, b) successfully. Drazil said to Varda: "It took me exactly s steps to travel from my house to yours". But Varda is confused about his words, she is not sure that it is possible to get from (0, 0) to (a, b) in exactly s steps. Can you find out if it is possible for Varda?

Input

You are given three integers a, b, and s ( - 109 ≤ a, b ≤ 109, 1 ≤ s ≤ 2·109) in a single line.

Output

If you think Drazil made a mistake and it is impossible to take exactly s steps and get from his home to Varda's home, print "No" (without quotes).

Otherwise, print "Yes".

Sample test(s)
Input
5 5 11
Output
No
Input
10 15 25
Output
Yes
Input
0 5 1
Output
No
Input
0 0 2
Output
Yes
Note

In fourth sample case one possible route is: .

    问从(0,0)到(n,m)走s 步是否能恰好到达,显然要大于等于n + m步,当大于的时候,多出来的一定要能被2 整除,这样可以在反悔中消耗多出来的s 。

    要注意正负号的问题、、

#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;

int main()
{
    int n, m, s;
    while(~scanf("%d%d%d",&n,&m,&s))
    {
        n = abs(n);
        m = abs(m);
        if(n + m == s || ((n + m - s)%2 == 0 && (n + m) < s))
            printf("Yes\n");
        else
            printf("No\n");
    }
}

B. Drazil and His Happy Friends

Drazil has many friends. Some of them are happy and some of them are unhappy. Drazil wants to make all his friends become happy. So he invented the following plan.

There are n boys and m girls among his friends. Let's number them from 0 to n - 1 and 0 to m - 1 separately. In i-th day, Drazil invites -th boy and -th girl to have dinner together (as Drazil is programmer, i starts from 0). If one of those two people is happy, the other one will also become happy. Otherwise, those two people remain in their states. Once a person becomes happy (or if he/she was happy originally), he stays happy forever.

Drazil wants to know whether he can use this plan to make all his friends become happy at some moment.

Input

The first line contains two integer n and m (1 ≤ n, m ≤ 100).

The second line contains integer b (0 ≤ b ≤ n), denoting the number of happy boys among friends of Drazil, and then follow b distinct integers x1, x2, ..., xb (0 ≤ xi < n), denoting the list of indices of happy boys.

The third line conatins integer g (0 ≤ g ≤ m), denoting the number of happy girls among friends of Drazil, and then follow g distinct integers y1, y2, ... , yg (0 ≤ yj < m), denoting the list of indices of happy girls.

It is guaranteed that there is at least one person that is unhappy among his friends.

Output

If Drazil can make all his friends become happy by this plan, print "Yes". Otherwise, print "No".

Sample test(s)
Input
2 3
0
1 0
Output
Yes
Input
2 4
1 0
1 2
Output
No
Input
2 3
1 0
1 1
Output
Yes
Note

By we define the remainder of integer division of i by k.

In first sample case:

  • On the 0-th day, Drazil invites 0-th boy and 0-th girl. Because 0-th girl is happy at the beginning, 0-th boy become happy at this day.
  • On the 1-st day, Drazil invites 1-st boy and 1-st girl. They are both unhappy, so nothing changes at this day.
  • On the 2-nd day, Drazil invites 0-th boy and 2-nd girl. Because 0-th boy is already happy he makes 2-nd girl become happy at this day.
  • On the 3-rd day, Drazil invites 1-st boy and 0-th girl. 0-th girl is happy, so she makes 1-st boy happy.
  • On the 4-th day, Drazil invites 0-th boy and 1-st girl. 0-th boy is happy, so he makes the 1-st girl happy. So, all friends become happy at this moment.
    纯暴力,一直循环即可。

    我在这里是循环(n + 1) * (m + 1) 遍,只是因为试了一试,( n + 1)*(m) 和 (n)*(m + 1)都没过、

    这里有两组数据

   

3 20
0
1 19
Yes

41 2
1 33
0
Yes
   
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <queue>
#include <vector>
#include <map>
using namespace std;

#define N 110

int boy[N];
int girl[N];

int main()
{
    int n, m;
    int a, b;
    int tmp_1;
    while(~scanf("%d%d",&n,&m))
    {
        memset(boy, 0, sizeof(boy));
        memset(girl, 0, sizeof(girl));
        scanf("%d",&a);
        for(int i = 0; i < a; i ++)
        {
            scanf("%d",&tmp_1);
            boy[tmp_1] = 1;
        }
        scanf("%d",&b);
        for(int i = 0; i < b; i ++)
        {
            scanf("%d",&tmp_1);
            girl[tmp_1] = 1;
        }
        int cnt = 0, cnt_i = 0, cnt_j = 0;
        
        int endn = (n + 1) * (m + 1); // 暴力次数

        while(cnt < endn)
        {
            if(boy[cnt_i] || girl[cnt_j])
            {
                boy[cnt_i] = 1;
                girl[cnt_j] = 1;
            }
            cnt_i = (cnt_i + 1)%n;
            cnt_j = (cnt_j + 1)%m;
            cnt ++;
        }

        bool ok1 = true;
        bool ok2 = true;
        for(int i = 0; i < n; i ++)
        {
            if(boy[i] == 0)
            {
                ok1 = false;
                break;
            }
        }
        for(int i = 0; i < m; i ++)
        {
            if(girl[i] == 0)
            {
                ok2 = false;
                break;
            }
        }
        if(ok1 && ok2)
            printf("Yes\n");
        else
            printf("No\n");
    }
}

C. Drazil and Factorial

Drazil is playing a math game with Varda.

Let's define for positive integer x as a product of factorials of its digits. For example, .

First, they choose a decimal number a consisting of n digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number x satisfying following two conditions:

1. x doesn't contain neither digit 0 nor digit 1.

2. = .

Help friends find such number.

Input

The first line contains an integer n (1 ≤ n ≤ 15) — the number of digits in a.

The second line contains n digits of a. There is at least one digit in a that is larger than 1. Number a may possibly contain leading zeroes.

Output

Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.

Sample test(s)
Input
4
1234
Output
33222
Input
3
555
Output
555
Note

In the first case,

    题意很简单,就是使得 = . ,x 为题目的数据,a 为输出的答案,越大越好。把数拆掉,使得位数越多越好,然后把大的数放在前位就可以了。

   

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;

int num[15];
char s[20];

int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        scanf("%s",s);
        int len = strlen(s);
        memset(num, 0, sizeof(num));

        for(int i = 0; i < len; i ++)
        {
            if(s[i] == '0' || s[i] == '1')
                continue;
            if(s[i] == '4')
            {
                num[3] ++;
                num[2] += 2;
            }
            else if(s[i] == '6')
            {
                num[5] ++;
                num[3] ++;
            }
            else if(s[i] == '8')
            {
                num[7] ++;
                num[2] += 3;
            }
            else if(s[i] == '9')
            {
                num[3] += 2;
                num[2] ++;
                num[7] ++;
            }
            else    
            {
                num[s[i] - '0'] ++;  //不能拆分的,直接对该数进行计数
            }
        }
        for(int i = 9; i >= 1; i --)
        {
            for(int j = 0; j < num[i]; j ++)
            {
                printf("%d",i);
            }
        }

        printf("\n");
    }
}


    最后,大年三十,新~~~~~~~~~   年  ~~~~~~~~~~~~·  快   ~~~~~~~~~~~~~   乐  ·~~~~~~~

标题基于SpringBoot+Vue的学生交流互助平台研究AI更换标题第1章引言介绍学生交流互助平台的研究背景、意义、现状、方法与创新点。1.1研究背景与意义分析学生交流互助平台在当前教育环境下的需求及其重要性。1.2国内外研究现状综述国内外在学生交流互助平台方面的研究进展与实践应用。1.3研究方法与创新点概述本研究采用的方法论、技术路线及预期的创新成果。第2章相关理论阐述SpringBoot与Vue框架的理论基础及在学生交流互助平台中的应用。2.1SpringBoot框架概述介绍SpringBoot框架的核心思想、特点及优势。2.2Vue框架概述阐述Vue框架的基本原理、组件化开发思想及与前端的交互机制。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue在学生交流互助平台中的整合方式及优势。第3章平台需求分析深入分析学生交流互助平台的功能需求、非功能需求及用户体验要求。3.1功能需求分析详细阐述平台的各项功能需求,如用户管理、信息交流、互助学习等。3.2非功能需求分析对平台的性能、安全性、可扩展性等非功能需求进行分析。3.3用户体验要求从用户角度出发,提出平台在易用性、美观性等方面的要求。第4章平台设计与实现具体描述学生交流互助平台的架构设计、功能实现及前后端交互细节。4.1平台架构设计给出平台的整体架构设计,包括前后端分离、微服务架构等思想的应用。4.2功能模块实现详细阐述各个功能模块的实现过程,如用户登录注册、信息发布与查看、在线交流等。4.3前后端交互细节介绍前后端数据交互的方式、接口设计及数据传输过程中的安全问题。第5章平台测试与优化对平台进行全面的测试,发现并解决潜在问题,同时进行优化以提高性能。5.1测试环境与方案介绍测试环境的搭建及所采用的测试方案,包括单元测试、集成测试等。5.2测试结果分析对测试结果进行详细分析,找出问题的根源并
内容概要:本文详细介绍了一个基于灰狼优化算法(GWO)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM)融合注意力机制的多变量多步时间序列预测项目。该项目旨在解决传统时序预测方法难以捕捉非线性、复杂时序依赖关系的问题,通过融合CNN的空间特征提取、BiLSTM的时序建模能力及注意力机制的动态权重调节能力,实现对多变量多步时间序列的精准预测。项目不仅涵盖了数据预处理、模型构建与训练、性能评估,还包括了GUI界面的设计与实现。此外,文章还讨论了模型的部署、应用领域及其未来改进方向。 适合人群:具备一定编程基础,特别是对深度学习、时间序列预测及优化算法有一定了解的研发人员和数据科学家。 使用场景及目标:①用于智能电网负荷预测、金融市场多资产价格预测、环境气象多参数预报、智能制造设备状态监测与预测维护、交通流量预测与智慧交通管理、医疗健康多指标预测等领域;②提升多变量多步时间序列预测精度,优化资源调度和风险管控;③实现自动化超参数优化,降低人工调参成本,提高模型训练效率;④增强模型对复杂时序数据特征的学习能力,促进智能决策支持应用。 阅读建议:此资源不仅提供了详细的代码实现和模型架构解析,还深入探讨了模型优化和实际应用中的挑战与解决方案。因此,在学习过程中,建议结合理论与实践,逐步理解各个模块的功能和实现细节,并尝试在自己的项目中应用这些技术和方法。同时,注意数据预处理的重要性,合理设置模型参数与网络结构,控制多步预测误差传播,防范过拟合,规划计算资源与训练时间,关注模型的可解释性和透明度,以及持续更新与迭代模型,以适应数据分布的变化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值