6.2 (45)
Proof:
W(t)′=π((f−1(f(t)))2−a2)f′(t)=π(t2−a2)f′(t)W'_{(t)}=\pi( (f^{-1}(f(t)))^2 - a^2)f'(t)=\pi(t^2-a^2)f'(t)W(t)′=π((f−1(f(t)))2−a2)f′(t)=π(t2−a2)f′(t)
S(t)=2πf(t)∫atxdx−2π∫atxf(x)dx=πf(t)[x2]at−2π∫atxf(x)dx=πf(t)t2−πf(t)a2−2π∫atxf(x)dxS_{(t)}=2\pi f(t)\int^t_a{x}{\rm d}x -2\pi\int^t_axf(x){\rm d}x = \pi f(t)[x^2]^t_a - 2\pi\int^t_axf(x){\rm d}x=\pi f(t)t^2-\pi f(t)a^2- 2\pi\int^t_axf(x){\rm d}xS(t)=2πf(t)∫atxdx−2π∫atxf(x)dx=πf(t)[x2]at−2π∫atxf(x)dx=πf(t)t2−πf(t)a2−2π∫atxf(x)dx
==>
S(t)′=πf′(t)t2+2πtf(t)−πa2f′(t)−2πtf(t)=π(t2−a2)f′(t)S'_{(t)}=\pi f'(t)t^2+2\pi tf(t) - \pi a^2f'(t)-2\pi tf(t)=\pi(t^2-a^2)f'(t)S(t)′=πf′(t)t2+2πtf(t)−πa2f′(t)−2πtf(t)=π(t2−a2)f′(t)
==>
W(t)′=S(t)′W'_{(t)}=S'_{(t)}W(t)′=S(t)′ .
W(a)=S(a)=0W(a)=S(a)=0W(a)=S(a)=0
Therefore,W(t)=S(t)W(t)=S(t)W(t)=S(t) for all t [a, b].
I found another washer method which can be proof been equivalent to the above two methods.
W(t)=∫f(a)f(t)π(x2−a2)dyW(t)=\int^{f(t)}_{f(a)}\pi (x^2-a^2){\rm d}yW(t)=∫f(a)f(t)π(x2−a2)dy
y=f(x)y=f(x)y=f(x) => dy=f′(x)dxdy=f'(x)dxdy=f′(x)dx
=>
W(t)==∫atπ(x2−a2)f′(x)dxW(t)==\int^t_a\pi (x^2-a^2)f'(x){\rm d}xW(t)==∫atπ(x2−a2)f′(x)dx
=>
W(t)′=π(t2−a2)f′(t)W'_{(t)}=\pi(t^2-a^2)f'(t)W(t)′=π(t2−a2)f′(t)
7.2 - 32

Solution:
dydt=r−ky\frac{dy}{dt}=r-kydtdy=r−ky => 1r−kydy=dt\frac{1}{r-ky}dy=dtr−ky1dy=dt=>∫1r−kydy=∫dt\int{\frac{1}{r-ky}}{\rm d}y=\int{\rm d}t∫r−ky1dy=∫dt => 1kln(r−ky)=t+C\frac{1}{k}ln(r-ky)=t+Ck1ln(r−ky)=t+C => y=1k(r−ce−kt)y=\frac{1}{k}(r-ce^{-kt})y=k1(r−ce−kt)
Alternatively:
Let z=r−kyz=r-kyz=r−ky. Then dzdt=−kdydt=−k(r−ky)=−kz\frac{dz}{dt}=-k\frac{dy}{dt}=-k(r-ky)=-kzdtdz=−kdtdy=−k(r−ky)=−kz. The equation dzdt=−kz\frac{dz}{dt}=-kzdtdz=−kz has solution z=ce−ktz=ce^{-kt}z=ce−kt, so r−ky=ce−ktr-ky=ce^{-kt}r−ky=ce−kt and y=1k(r−ce−kt)y=\frac{1}{k}(r-ce^{-kt})y=k1(r−ce−kt)
Since y(0)=1k(r−c)=y0y(0)=\frac{1}{k}(r-c)=y_0y(0)=k1(r−c)=y0 , we have c=r−ky0c=r-ky_0c=r−ky0 and thus
y=(y0−rk)e−kt+rky=(y_0-\frac{r}{k})e^{-kt}+\frac{r}{k}y=(y0−kr)e−kt+kr
8-Advance Exercises


9.2

9-ad

本文探讨了两种洗衣机工作原理的数学证明过程,并展示了它们与微分方程的关系。通过积分和导数运算,作者揭示了两个方法的等价性,最后给出了两种方法的通用形式和具体解例。
591





