微分是变化率,积分则是变化率的累加。
Quadratic formula
If
ax2+bx+c=0ax^2+bx+c=0ax2+bx+c=0
then
x=−b±b2−4ac2ax=\frac{-b\pm\sqrt{b^2-4ac}}{2a}x=2a−b±b2−4ac
If
x2+bx+c=0x^2+bx+c=0x2+bx+c=0
then
x=(−b/2)±(b/2)2−acx=(-b/2)\pm\sqrt{(b/2)^2-ac}x=(−b/2)±(b/2)2−ac
Polynomial
立方和差: a3±b3=(a±b)(a2∓ab+b2)a^3 \pm b^3 = (a\pm b)(a^2 \mp ab+b^2)a3±b3=(a±b)(a2∓ab+b2)
和差立方:(a±b)3=a3±3a2b+3ab2±b3(a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3(a±b)3=a3±3a2b+3ab2±b3
Trigonometric Functions
The Six Basic Trigonometric Functions
Trigonometric Identities
cos2θ+sin2θ=1\cos^2θ+\sin^2θ=1cos2θ+sin2θ=1
Addition Formulas
cos(A+B)=cosAcosB−sinAsinB\cos(A+B)=\cos A\cos B - \sin A \sin Bcos(A+B)=cosAcosB−sinAsinB
sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A \cos B + \cos A \sin Bsin(A+B)=sinAcosB+cosAsinB
Double-Angle Formulas
cos2θ=cos2θ−sin2θ\cos2θ = \cos^2θ - \sin^2θcos2θ=cos2θ−sin2θ
sin2θ=2sinθcosθ\sin2θ = 2\sinθ \cosθsin2θ=2sinθcosθ
Half-Angle Formulas
cos2θ=1+cos2θ2cos^2 θ = \frac{1 + \cos 2θ}{2}cos2θ=21+cos2θ
sin2θ=1−cos2θ2sin^2 θ = \frac{1 - \cos 2θ}{2}sin2θ=2