文章目录
Power Series
Power Series and Convergence
DEFINITIONS
A power series about x = 0 x=0 x=0 is a series of the form
∑ n = 0 ∞ c n x n = c 0 + c 1 x + c 2 x 2 + ⋯ + c n x n + … . (1) \sum\limits_{n=0}^\infin c_nx^n=c_0+c_1x+c_2x^2+\dots+c_nx^n+\dots.\tag{1} n=0∑∞cnxn=c0+c1x+c2x2+⋯+cnxn+….(1)A power series about x = a x=a x=a is a series of the form
∑ n = 0 ∞ c n ( x − a ) n = c 0 + c 1 ( x − a ) + c 2 ( x − a ) 2 + ⋯ + c n ( x − a ) n + … (2) \sum\limits_{n=0}^\infin c_n(x-a)^n=c_0+c_1(x-a)+c_2(x-a)^2+\dots+c_n(x-a)^n+\dots\tag{2} n=0∑∞cn(x−a)n=c0+c1(x−a)+c2(x−a)2+⋯+cn(x−a)n+…(2)in which the center a a a and the coefficients c 0 , c 1 , c 2 , … , c n , … c_0,c_1,c_2,\dots,c_n,\dots c0,c1,c2,…,cn,… are constants.
Using the Ratio Test to see where it converges and diverges.
e.g.
(a) ∑ n = 1 ∞ ( − 1 ) n − 1 x n n = x − x 2 2 + x 3 3 − ⋯ \text{(a)}\quad\displaystyle\sum\limits_{n=1}^\infin(-1)^{n-1}\frac{x^n}{n}=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots (a)n=1∑∞(−1)n−1nxn=x−2x2+3x3−⋯
Solution
Apply the Ratio Test to the series Σ ∣ u n ∣ \Sigma|u_n| Σ∣un∣, where is the n n nth term of the power series in question.
(a) ∣ u n + 1 u n ∣ = ∣ x n + 1 n + 1 ⋅ n x ∣ = n n + 1 ∣ x ∣ → ∣ x ∣ \text{(a)}\quad\displaystyle\left|\frac{u_{n+1}}{u_n}\right|=\left|\frac{x^{n+1}}{n+1}\cdot\frac{n}{x}\right|=\frac{n}{n+1}|x|\to|x| (a)∣∣∣∣unun+1∣∣∣∣=∣∣∣∣n+1xn+1⋅xn