Problem Description Given a positive integer N, you should output the most right digit of N^N.
Input The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output For each test case, you should output the rightmost digit of N^N.
Sample Input2
3
4
Sample Output7
6
[hint]
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7.
In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
[/hint]
#include<stdio.h>
//typedefe long long ll;
/*有同学用 typedefe long long ll; (作用就是
将long long 改名为ll后面方便)*/
long long quickpow(long long a);
int main()
{
int n,i,s=1,b;
scanf("%d",&n);
while(n--)
{
long long a;
scanf("%lld",&a);
printf("%lld\n",quickpow(a));
}
}
long long quickpow(long long a){
long long ans=1;
long long b=a;
while(b){
if(b&1) //位运算,都为1,结果才为1;
ans=(ans*a)%10;
a=(a*a)%10; //模一下10,防止超越;
b=b>>1;
}
return ans;
}
快速幂的用法,目前还不太熟练。