LeetCode: Triangle

本文探讨了如何通过动态规划算法解决三角形中从顶点到底边的最小路径和问题,通过实例展示了求解过程及关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

class Solution {
public:
    int minimumTotal(vector<vector<int> > &triangle) {
        int sizeX = triangle.size();
        if(sizeX == 0)
            return 0;
        int sizeY = triangle[sizeX-1].size();
        vector<int> cur(sizeY);
        for(int x = sizeX - 1; x >=0; x--)
        {
            for(int y = 0; y < triangle[x].size(); y++)
            {
                if(x == sizeX - 1)
                {
                    cur[y] = triangle[x][y];
                }
                else
                {
                    cur[y] = std::min(cur[y], cur[y+1]) + triangle[x][y];   
                }
            }
        }
        return cur[0];
        
    }
};

Round 2:

class Solution {
public:
    int minimumTotal(vector<vector<int> > &triangle) {
		if(triangle.size() == 0)
			return 0;
		int sums[triangle[triangle.size()-1].size()] = {0};	
		for(int i = triangle.size()-1; i >=0; i--)
			for(int j = 0; j <= i; j++)
			{
				if(i == triangle.size()-1)
				{
					sums[j] = triangle[i][j];
				}
				else
				{
					sums[j] = triangle[i][j] + std::min(sums[j], sums[j+1]);
				}
			}
		return sums[0];
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值