金融分析与风险管理——期权中的希腊字母(Greeks)
1. 期权的Delta
期权的Delta:期权价格变动与标的物价格变动的比率,即期权价格与标的物价格之间关系曲线的切线斜率,公式如下:
Δ = ∂ ∏ ∂ S \Delta = \frac{\partial \prod}{\partial S} Δ=∂S∂∏
∏ \prod ∏ 表示期权价格,S 表示标的物价格。
Delta = 0.6 表示:当标的物价格变化一个很小的金额时,相应的期权价格变化约为标的物价格变化的60%。
利用BSM模型的期权定价公式,欧式看涨、看跌的分布如下,具体的过程可以参照:金融分析与风险管理——期权BSM模型。
欧式看涨期权的定价公式:
c = S N ( d 1 ) − K e − r ( T − t ) N ( d 2 ) c = SN(d_1) - Ke^{-r(T-t)}N(d_2) c=SN(d1)−Ke−r(T−t)N(d2)
欧式看跌期权的定价公式:
p = K e − r ( T − t ) N ( − d 2 ) − S N ( − d 1 ) p = Ke^{-r(T-t)}N(-d_2) - SN(-d_1) p=Ke−r(T−t)N(−d2)−SN(−d1)
其中, T T T 是期权的有效期限, t t t 是流失的时间。
N ( x ) = ∫ 1 2 π e − x 2 / 2 d x N(x) = \int\limits \frac{1}{\sqrt{2 \pi}}e^{-x^2/2}\mathrm{d}x N(x)=∫2π1e−x2/2dx
d 1 = l n ( S K ) + ( r + σ 2 / 2 ) ( T − t ) σ T − t d_1 = \frac{ln(\frac{S}{K}) + (r+\sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} d1=σT−tln(KS)+(r+σ2/2)(T−t)
d 2 = l n ( S K ) + ( r − σ 2 / 2 ) ( T − t ) σ T − t = d 1 − σ T − t d_2 = \frac{ln(\frac{S}{K}) + (r-\sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} = d_1 - \sigma \sqrt{T-t} d2=σT−tln(KS)+(r−σ2/2)(T−t)=d1−σT−t
接下来以欧式看涨期权的多头为例对其进行推导:
N ′ ( x ) = 1 2 π e − x 2 / 2 N^{'}(x) = \frac{1}{\sqrt{2 \pi}}e^{-x^2/2} N′(x)=2π1e−x2/2
d 2 = l n ( S K ) + ( r − σ 2 / 2 ) ( T − t ) σ T − t = = > d 2 σ T − t + σ 2 ( T − t ) / 2 = l n ( S K ∗ e r ( T − t ) ) d_2 = \frac{ln(\frac{S}{K}) + (r-\sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} ==> d_2\sigma \sqrt{T-t} + \sigma^2(T-t)/2 = ln(\frac{S}{K}*e^{r(T-t)}) d2=σT−tln(KS)+(r−σ2/2)(T−t)==>d2σT−t+σ2(T−t)/2=ln(KS∗er(T−t))
N ′ ( d 1 ) = N ′ ( d 2 + σ T − t ) = 1 2 π e − ( d 2 + σ T − t ) 2 / 2 = 1 2 π e − d 2 2 / 2 − d 2 σ T − t − σ 2 ( T − t ) / 2 = 1 2 π e − d 2 2 / 2 ∗ e − d 2 σ T − t − σ 2 ( T − t ) / 2 = N ′ ( d 2 ) e − d 2 σ T − t − σ 2 ( T − t ) / 2 = N ′ ( d 2 ) ∗ K S e − r ( T − t ) = = > S N ′ ( d 1 ) = K e − r ( T − t ) N ′ ( d 2 ) − − − − > ( 1 ) N^{'}(d_1) = N^{'}(d_2 + \sigma \sqrt{T-t}) = \\[10pt] \frac{1}{\sqrt{2 \pi}}e^{-(d_2 + \sigma \sqrt{T-t})^2/2} = \\[10pt] \frac{1}{\sqrt{2 \pi}}e^{-d_2^2/2 - d_2 \sigma \sqrt{T-t}-\sigma^2(T-t)/2} = \\[10pt] \frac{1}{\sqrt{2 \pi}}e^{-d_2^2/2}* e^{- d_2 \sigma \sqrt{T-t}-\sigma^2(T-t)/2} = \\[10pt] N^{'}(d_2)e^{- d_2 \sigma \sqrt{T-t}-\sigma^2(T-t)/2} = \\[10pt] N^{'}(d_2)*\frac{K}{S}e^{-r(T-t)} ==> SN^{'}(d_1) = Ke^{-r(T-t)}N^{'}(d_2) ---->(1) N′(d1)=N′(d2+σT−t)=2π1e−(d2+σT−t)2/2=2π1e−d22/2−d2σT−t−σ2(T−t)/2=2π1e−d22/2∗e−d2σT−t−σ2(T−t)/2=N′(d2)e−d2σT−t−σ2(T−t)/2=N′(d2)∗SKe−r(T−t)==>SN′(d1)=Ke−r(T−t)N′(d2)−−−−>(1)
∂ d 1 ∂ S = ∂ l n ( S K ) + ( r + σ 2 / 2 ) ( T − t ) σ T − t ∂ S = 1 S σ T − t \frac{\partial d_1}{\partial S} = \frac{\partial \frac{ln(\frac{S}{K}) + (r+\sigma^2/2)(T-t)}{\sigma \sqrt{T-t}}}{\partial S} = \frac{1}{S \sigma \sqrt{T-t}}