PAT 1048 Find Coins

本文介绍了两种有效的算法来解决寻找数组中和为特定值的两个数的问题:一种是利用二分查找的方法,适用于已排序的数组;另一种是采用哈希表的方式,能够处理无序数组且考虑了特殊情况。
#include <cstdio>
#include <algorithm>
using namespace std;

const int maxn = 1e5 + 5;
int coin[maxn];

int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; ++i) {
        scanf("%d", &coin[i]);
    }
    sort(coin, coin + n);
    for (int i = 0; i < n - 1; ++i) {
        int left = i + 1, right = n;
        while (left <= right) {
            int mid = (left + right) / 2;
            if (coin[mid] == (m - coin[i])) {
                printf("%d %d", coin[i], coin[mid]);
                return 0;
            }
            else if (coin[mid] < (m - coin[i])) {
                left = mid + 1;
            }
            else
            {
                right = mid - 1;
            }
        }
    }
    printf("No Solution");
    return 0;
}
  • 方法二 哈希表

    注意遍历时可能出现i与m - i相等的情况,此时必须保证i至少出现两次

#include <cstdio>
#include <memory.h>
const int maxn = 1e3 + 5;
int coin[maxn];

int main()
{
    memset(coin, 0, sizeof(coin));
    int n, m;
    scanf("%d%d", &n, &m);
    while (n--) {
        int value;
        scanf("%d", &value);
        coin[value]++;
    }

    for (int i = 0; i <= m; ++i) {
        if (coin[i] && coin[m - i]) {
            if (i == (m - i) && coin[i] < 2)	// i与m - i相等的情况,此时必须保证i至少出现两次
                continue;
            printf("%d %d", i, m - i);
            return 0;
        }
    }
    printf("No Solution");
    return 0;
}
### 关于分割硬币的公平分配算法 在计算机科学和数学领域,分割硬币的问题通常可以被建模为一种优化问题或动态规划问题。目标通常是找到一种方式来最小化两个集合之间的差异或者最大化某种公平性标准。 #### 动态规划解决方案 对于分割硬币使其尽可能均匀分布的情况,可以采用动态规划的方法解决此问题。假设我们有一组硬币 `coins` 和它们的价值分别为 `[c1, c2, ..., cn]`,我们需要将其分成两部分使得这两部分价值之差最小[^2]。 以下是基于动态规划的一个实现方案: ```python def min_difference_partition(coins): total_sum = sum(coins) n = len(coins) dp = [[False]*(total_sum//2 + 1) for _ in range(n+1)] # Initialize DP table for i in range(n+1): dp[i][0] = True for i in range(1, n+1): for j in range(1, total_sum//2 + 1): if coins[i-1] <= j: dp[i][j] = dp[i-1][j] or dp[i-1][j-coins[i-1]] else: dp[i][j] = dp[i-1][j] # Find the largest value that can be achieved less than half of total sum for j in range(total_sum//2, -1, -1): if dp[n][j]: return abs((total_sum - j) - j) ``` 该函数通过构建一个二维布尔数组 `dp` 来记录子集总和的可能性,并最终返回能够达到的最大接近一半总和的值,从而计算出两者间的最小差距[^3]。 #### 贪婪算法近似解法 如果追求更高效的解决方案而允许一定的误差范围,则可以考虑贪婪策略。这种方法并不总是能找到最优解,但在某些情况下表现良好。基本思路是从最大面额开始依次选取直到无法再选为止[^4]。 ```python def greedy_divide_coins(coins): coins.sort(reverse=True) group_a = [] group_b = [] for coin in coins: if sum(group_a) < sum(group_b): group_a.append(coin) else: group_b.append(coin) return (group_a, group_b), abs(sum(group_a)-sum(group_b)) ``` 尽管如此,在实际应用中需注意验证其适用性和局限性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值