Newton-Raphson方法

本文详细介绍了牛顿拉弗森方法的起源与原理,通过逐步逼近的方法求解方程的根。从古巴比伦人的智慧到牛顿与拉弗森的创新,展示了这一方法在现代数学与科学中的应用。通过实例演示如何使用该方法求解一元二次方程,并解释了其收敛性与效率。同时,探讨了牛顿拉弗森方法在实际问题中的重要性和局限性。

 The Newton-Raphson Method


Already the Babylonians knew how to approximate square roots. Let's consider the example of how they found approximations to $\sqrt{2}$.

Let's start with a close approximation, say x1=3/2=1.5. If we square x1=3/2, we obtain 9/4, which is bigger than 2. Consequently $3/2>\sqrt{2}$. If we now consider 2/x1=4/3, its square 16/9 is of course smaller than 2, so $2/x_1<\sqrt{2}$.

We will do better if we take their average: 

\begin{displaymath}x_2=\frac{1}{2}\left(x_1+\frac{2}{x_1}\right)=\frac{17}{12}.\end{displaymath}

If we square x2=17/12, we obtain 289/144, which is bigger than 2. Consequently $17/12>\sqrt{2}$. If we now consider 2/x2=24/17, its square 576/289 is of course smaller than 2, so$2/x_2<\sqrt{2}$.

Let's take their average again: 

\begin{displaymath}x_3=\frac{1}{2}\left(x_2+\frac{2}{x_2}\right)=\frac{577}{408}.\end{displaymath}

x3 is a pretty good rational approximation to the square root of 2: 

\begin{displaymath}x_3^2=332929/166464\approx 2.000006007305,\end{displaymath}

but if this is not good enough, we can just repeat the procedure again and again.

Newton and Raphson used ideas of the Calculus to generalize this ancient method to find the zeros of an arbitrary equation 

\begin{displaymath}f(x) = 0 \;.\end{displaymath}

Their underlying idea is the approximation of the graph of the function f(x) by the tangent lines, which we discussed in detail in the previous pages.

Let r be a root (also called a "zero") of f(x), that is f(r) =0. Assume that $f'(r) \neq 0$. Let x1 be a number close to r (which may be obtained by looking at the graph of f(x)). The tangent line to the graph of f(x) at (x1,f(x1)) has x2 as its x-intercept.

From the above picture, we see that x2 is getting closer to r. Easy calculations give 

\begin{displaymath}x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \;\cdot\end{displaymath}

Since we assumed $f'(r) \neq 0$, we will not have problems with the denominator being equal to 0. We continue this process and find x3 through the equation 

\begin{displaymath}x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \;\cdot\end{displaymath}

This process will generate a sequence of numbers $\{x_n\}$ which approximates r.

This technique of successive approximations of real zeros is called Newton's method, or the Newton-Raphson Method.

Example. Let us find an approximation to $\sqrt{5}$ to ten decimal places.

Note that $\sqrt{5}$ is an irrational number. Therefore the sequence of decimals which defines $\sqrt{5}$ will not stop. Clearly $r = \sqrt{5}$ is the only zero of f(x) = x2 - 5 on the interval [1,3]. See the Picture.

Let $\{x_n\}$ be the successive approximations obtained through Newton's method. We have 

\begin{displaymath}x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - 5}{2x_n} \;\cdot\end{displaymath}

Let us start this process by taking x1 = 2.


\begin{displaymath}\begin{array}{cl}x_1=&2\\x_2=&2.25\\x_3=&2.2361111111111......7110\\x_6=&2.236067977499789696409173668731276\\\end{array}\end{displaymath}

It is quite remarkable that the results stabilize for more than ten decimal places after only 5 iterations!

Example. Let us approximate the only solution to the equation 

\begin{displaymath}x = \cos(x) \;\cdot\end{displaymath}

In fact, looking at the graphs we can see that this equation has one solution.

This solution is also the only zero of the function $f(x) = x -\cos(x)$. So now we see how Newton's method may be used to approximate r. Since r is between 0 and $\displaystyle\frac{\pi}{2}$, we set x1= 1. The rest of the sequence is generated through the formula 

\begin{displaymath}x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n - \cos(x_n)}{1+ \sin(x_n)} \;\cdot\end{displaymath}

We have 

\begin{displaymath}\begin{array}{cl}x_1=&1.\\x_2=&0.7503638678402438930349423......7673873\\x_8=&0.739085133215160641655312087673873\end{array}\end{displaymath}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值