随着预训练模型的参数越来越大,尤其是175B参数大小的GPT3发布以来,让很多中小公司和个人研究员对于大模型的全量微调望而却步,近年来研究者们提出了各种各样的参数高效迁移学习方法(Parameter-efficient Transfer Learning),即固定住Pretrain Language model(PLM)的大部分参数,仅调整模型的一小部分参数来达到与全部参数的微调接近的效果(调整的可以是模型自有的参数,也可以是额外加入的一些参数)。本文将介绍一些常见的参数高效微调技术,比如:BitFit、Prefix Tuning、Prompt Tuning、P-Tuning、P-Tuning v2、Adapter Tuning及其变体、LoRA、AdaLoRA、QLoRA、MAM Adapter、UniPELT等。
1、BitFit
论文地址:https://aclanthology.org/2022.acl-short.1.pdf
代码地址:https://github.com/benzakenelad/BitFit
BitFIt只对模型的bias进行微调。在小规模-中等规模的训练数据上,BitFit的性能与全量微调的性能相当,甚至有可能超过,在大规模训练数据上,与其他fine-tuning方法也差不多。在大模型中bias存在Q,K,V,MLP,LayerNorm中,具体公式如下:
在Bert-Base/Bert-Large这种模型里,bias参数仅占模型全部参数量的0.08%~0.09%。但是通过在Bert-Large模型上基于GLUE数据集进行了 BitFit、Adapter和Diff-Pruning的效果对比发现,BitFit在参数量远小于Adapter、Diff-Pruning的情况下,效果与Adapter、Diff-Pruning想当,甚至在某些任务上略优于Adapter、Diff-Pruning。
通过Bitfit训练前后的参数对比,发现很多bias参数没有太多变化,例如跟计算key所涉及到的bias参数。发现其中计算query与中间MLP层的bias(将特征维度从N放大到4N的FFN层——将输入从768d转化为到3072d)变化最为明显,只更新这两类bias参数也能达到不错的效果,反之,固定其中任何一者,模型的效果都有较大损失。