import tkinter as tk
from tkinter import ttk, messagebox, filedialog
import json
import os
import math
import numpy as np
class OpticalSystem:
def __init__(self):
self.surfaces = [] # 存储光学表面对象
self.entrance_pupil_diameter = None # 入瞳直径 (mm)
self.entrance_pupil_position = None # 入瞳位置 (相对第一个面顶点) (mm)
self.object_infinite = True # 物在无穷远
self.field_angle = None # 半视场角 (度)
self.object_distance = None # 物距 (有限远) (mm)
self.object_height = None # 物高 (有限远) (mm)
self.aperture_angle = None # 孔径角 (有限远) (度)
self.light_type = "d" # 色光类型,默认d光
self.ray_paths = [] # 存储光线路径数据
# 计算结果存储
self.results = {
"focal_length": None, # 焦距 f'
"ideal_image_distance": None, # 理想像距 l'
"actual_image_position": None, # 实际像位置
"image_principal_plane": None, # 像方主面位置 lH'
"exit_pupil_distance": None, # 出瞳距 lp'
"ideal_image_height": None, # 理想像高 y0'
"spherical_aberration": None, # 球差
"longitudinal_chromatic": None, # 位置色差
"tangential_field_curvature": None, # 子午场曲 xt'
"sagittal_field_curvature": None, # 弧矢场曲 xs'
"astigmatism": None, # 像散 Δxts'
"actual_image_height": None, # 实际像高
"relative_distortion": None, # 相对畸变
"absolute_distortion": None, # 绝对畸变
"lateral_chromatic": None, # 倍率色差
"tangential_coma": None # 子午慧差
}
class Surface:
def __init__(self, r=float('inf'), d=0.0, nd=1.0, vd=0.0):
self.r = r # 曲率半径 (mm)
self.d = d # 厚度/间隔 (mm)
self.nd = nd # d光折射率
self.vd = vd # 阿贝数
def to_dict(self):
"""将表面数据转换为字典"""
return {
"r": self.r,
"d": self.d,
"nd": self.nd,
"vd": self.vd
}
@classmethod
def from_dict(cls, data):
"""从字典创建表面对象"""
return cls(
r=data.get('r', float('inf')),
d=data.get('d', 0.0),
nd=data.get('nd', 1.0),
vd=data.get('vd', 0.0)
)
class Calculate:
EPS = 1e-5 # PA校验精度
@staticmethod
def trace_ray(system, field_coeff, aperture_coeff, light_type):
"""
光线追迹核心函数
返回: (L0, L1, U, I0, I1, PA)
"""
surfaces = system.surfaces
n_surfaces = len(surfaces)
# 初始化参数
if system.object_infinite:
h0 = aperture_coeff * system.entrance_pupil_diameter / 2
L = 0
U = 0
else:
y = field_coeff * system.object_height
eta = aperture_coeff * system.entrance_pupil_diameter / 2
Lp = system.entrance_pupil_position
U = np.arctan((y - eta) / (Lp + system.object_distance))
L = Lp + eta / np.tan(U)
# 初始化存储列表
L0_data = [L]
L1_data = []
U_data = [U]
I0_data = []
I1_data = []
PA_data = []
# 光线追迹主循环
for i, surf in enumerate(surfaces):
# 获取折射率
n0, n1 = Calculate.get_refractive_indices(surf, light_type)
# 计算入射角
if surf.r == 0:
raise ValueError("曲率半径不能为0,请检查输入参数。")
if system.object_infinite and i == 0:
sinI = h0 / surf.r
else:
sinI = (L - surf.r) / surf.r * np.sin(U)
# 计算折射角
sinII = n0 / n1 * sinI
# 角度计算
I = np.arcsin(sinI) if abs(sinI) < 1 else 0
II = np.arcsin(sinII) if abs(sinII) < 1 else 0
I0_data.append(I)
I1_data.append(II)
# 计算折射后的角度和截距
UU = U + I - II
if abs(np.sin(UU)) < 1e-8:
LL = float('inf')
else:
LL = surf.r + surf.r * sinII / np.sin(UU)
L1_data.append(LL)
U_data.append(UU)
# PA校对法
PA1 = L * np.sin(U) / np.cos((I - U) / 2)
PA2 = LL * np.sin(UU) / np.cos((II - UU) / 2)
PA_data.append(PA2)
# 过渡公式
U = UU
L = LL - surf.d
# 保存下一面的物方截距
if i < n_surfaces - 1:
L0_data.append(L)
return L0_data, L1_data, U_data, I0_data, I1_data, PA_data
@staticmethod
def get_refractive_indices(surface, light_type):
"""根据光线类型获取折射率"""
if light_type == 'd':
return surface.nd, surface.nd
elif light_type == 'F':
# 使用阿贝数计算F光折射率
return surface.nd - surface.vd/100, surface.nd - surface.vd/100
elif light_type == 'C':
# 使用阿贝数计算C光折射率
return surface.nd + surface.vd/100, surface.nd + surface.vd/100
else:
return surface.nd, surface.nd
@staticmethod
def calculate_focal_length(system):
"""计算焦距 f'"""
# 使用近轴光线计算
_, L1, U, _, _, _ = Calculate.trace_ray(
system, 0, 1e-5, 'd'
)
h0 = 1e-5 * system.entrance_pupil_diameter / 2
f_prime = h0 / U[-1] # 焦距 = 入射高度 / 出射角度
system.results["focal_length"] = f_prime
return f_prime
@staticmethod
def calculate_ideal_image_distance(system):
"""计算理想像距 l'"""
# 使用近轴光线计算
_, L1, _, _, _, _ = Calculate.trace_ray(
system, 0, 1e-5, 'd'
)
l_prime = L1[-1] # 最后一面到理想像点的距离
system.results["ideal_image_distance"] = l_prime
return l_prime
@staticmethod
def calculate_actual_image_position(system, aperture_coeff=1.0, light_type='d'):
"""计算实际像位置"""
_, L1, _, _, _, _ = Calculate.trace_ray(
system, 0, aperture_coeff, light_type
)
actual_position = L1[-1]
system.results["actual_image_position"] = actual_position
return actual_position
@staticmethod
def calculate_image_principal_plane(system):
"""计算像方主面位置 lH'"""
f_prime = Calculate.calculate_focal_length(system)
l_prime = Calculate.calculate_ideal_image_distance(system)
lH_prime = f_prime - l_prime
system.results["image_principal_plane"] = lH_prime
return lH_prime
@staticmethod
def calculate_exit_pupil_distance(system):
"""计算出瞳距 lp'"""
# 创建虚拟入瞳面
pupil_surface = Surface(
r=0,
d=0,
nd=1.0
)
temp_system = OpticalSystem()
temp_system.surfaces = [pupil_surface] + system.surfaces
temp_system.entrance_pupil_diameter = system.entrance_pupil_diameter
temp_system.entrance_pupil_position = 0
temp_system.object_infinite = True
_, L1, _, _, _, _ = Calculate.trace_ray(
temp_system, 0, 1e-5, 'd'
)
lp_prime = L1[-1]
system.results["exit_pupil_distance"] = lp_prime
return lp_prime
@staticmethod
def calculate_ideal_image_height(system):
"""计算理想像高 y0'"""
if system.object_infinite:
f_prime = Calculate.calculate_focal_length(system)
y0_prime = f_prime * np.tan(np.radians(system.field_angle))
else:
# 使用近轴光线计算放大率
_, L1, U, _, _, _ = Calculate.trace_ray(
system, 0, 1e-5, 'd'
)
magnification = U[0] / U[-1] # 角度放大率
y0_prime = system.object_height * magnification
system.results["ideal_image_height"] = y0_prime
return y0_prime
@staticmethod
def calculate_spherical_aberration(system):
"""计算球差"""
# 近轴像位置
l_prime = Calculate.calculate_ideal_image_distance(system)
# 边缘光线像位置
l_actual = Calculate.calculate_actual_image_position(system, 1.0, 'd')
spherical_aberration = l_actual - l_prime
system.results["spherical_aberration"] = spherical_aberration
return spherical_aberration
@staticmethod
def calculate_longitudinal_chromatic(system):
"""计算位置色差"""
lF = Calculate.calculate_actual_image_position(system, 1.0, 'F')
lC = Calculate.calculate_actual_image_position(system, 1.0, 'C')
longitudinal_chromatic = lF - lC
system.results["longitudinal_chromatic"] = longitudinal_chromatic
return longitudinal_chromatic
@staticmethod
def calculate_astigmatism(system, field_coeff=1.0):
"""计算像散、场曲"""
# 获取光线追迹数据
L0, L1, U, I0, I1, PA = Calculate.trace_ray(
system, field_coeff, 0, 'd'
)
surfaces = system.surfaces
n_surfaces = len(surfaces)
# 初始化场曲变量
xt = xs = delta_x = 0
for i in range(n_surfaces):
# 计算当前面的参数
x = PA[i] ** 2 / (2 * surfaces[i].r)
# 初始化t和s
if i == 0:
t = s = (L0[0] - x) / np.cos(U[1])
# 获取折射率
n0, n1 = Calculate.get_refractive_indices(surfaces[i], 'd')
# 计算子午场曲
temp_tt = (n1 * np.cos(I1[i]) - n0 * np.cos(I0[i])) / surfaces[i].r \
+ n0 * np.cos(I0[i]) ** 2 / t
tt = n1 * np.cos(I1[i]) ** 2 / temp_tt
# 计算弧矢场曲
temp_ss = (n1 * np.cos(I1[i]) - n0 * np.cos(I0[i])) / surfaces[i].r \
+ n0 / s
ss = n1 / temp_ss
# 过渡公式
if i < n_surfaces - 1:
xx = PA[i+1] ** 2 / (2 * surfaces[i+1].r)
D = (surfaces[i].d - x + xx) / np.cos(U[i+1])
t = tt - D
s = ss - D
# 最后一面计算场曲和像散
if i == n_surfaces - 1:
lt = tt * np.cos(U[i+1]) + x
ls = ss * np.cos(U[i+1]) + x
xt = lt - L1[i]
xs = ls - L1[i]
delta_x = xt - xs
system.results["tangential_field_curvature"] = xt
system.results["sagittal_field_curvature"] = xs
system.results["astigmatism"] = delta_x
return xt, xs, delta_x
@staticmethod
def calculate_actual_image_height(system, field_coeff=1.0, aperture_coeff=0.0, light_type='d'):
"""计算实际像高"""
L0, L1, U, _, _, _ = Calculate.trace_ray(
system, field_coeff, aperture_coeff, light_type
)
# 使用最后一面到像面的距离和出射角度计算像高
actual_height = (system.surfaces[-1].d - L1[-1]) * np.tan(U[-1])
system.results["actual_image_height"] = actual_height
return actual_height
@staticmethod
def calculate_distortion(system, field_coeff=1.0):
"""计算畸变"""
ideal_height = Calculate.calculate_ideal_image_height(system)
actual_height = Calculate.calculate_actual_image_height(system, field_coeff, 0, 'd')
absolute_distortion = actual_height - ideal_height
relative_distortion = absolute_distortion / ideal_height
system.results["absolute_distortion"] = absolute_distortion
system.results["relative_distortion"] = relative_distortion
return absolute_distortion, relative_distortion
@staticmethod
def calculate_lateral_chromatic(system, field_coeff=1.0):
"""计算倍率色差"""
yF = Calculate.calculate_actual_image_height(system, field_coeff, 0, 'F')
yC = Calculate.calculate_actual_image_height(system, field_coeff, 0, 'C')
lateral_chromatic = yF - yC
system.results["lateral_chromatic"] = lateral_chromatic
return lateral_chromatic
@staticmethod
def calculate_tangential_coma(system, field_coeff=1.0):
"""计算子午彗差"""
# 追迹三条光线:上光线、主光线、下光线
L0_upper, L1_upper, U_upper, _, _, _ = Calculate.trace_ray(
system, field_coeff, 1.0, 'd'
)
L0_center, L1_center, U_center, _, _, _ = Calculate.trace_ray(
system, field_coeff, 0.0, 'd'
)
L0_lower, L1_lower, U_lower, _, _, _ = Calculate.trace_ray(
system, field_coeff, -1.0, 'd'
)
# 计算像高
y_upper = (system.surfaces[-1].d - L1_upper[-1]) * np.tan(U_upper[-1])
y_center = (system.surfaces[-1].d - L1_center[-1]) * np.tan(U_center[-1])
y_lower = (system.surfaces[-1].d - L1_lower[-1]) * np.tan(U_lower[-1])
# 子午彗差 = (上光线像高 + 下光线像高)/2 - 主光线像高
tangential_coma = (y_upper + y_lower) / 2 - y_center
system.results["tangential_coma"] = tangential_coma
return tangential_coma
class MainApplication:
def __init__(self, root):
self.root = root
self.root.title("光学系统计算程序")
self.root.geometry("1000x850")
# 创建光学系统对象
self.system = OpticalSystem()
# 创建GUI组件
self.create_widgets()
# 加载默认设置(如果有)
self.load_default_settings()
def create_widgets(self):
# 主框架
main_frame = ttk.Frame(self.root)
main_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)
# 文件操作框架
file_frame = ttk.LabelFrame(main_frame, text="文件操作")
file_frame.pack(fill=tk.X, padx=5, pady=5)
# 文件路径输入
ttk.Label(file_frame, text="文件路径:").grid(row=0, column=0, padx=5, pady=5)
self.file_path_entry = ttk.Entry(file_frame, width=50)
self.file_path_entry.grid(row=0, column=1, padx=5, pady=5)
# 文件操作按钮
browse_btn = ttk.Button(file_frame, text="浏览...", command=self.browse_file)
browse_btn.grid(row=0, column=2, padx=5, pady=5)
load_btn = ttk.Button(file_frame, text="加载系统参数", command=self.load_system)
load_btn.grid(row=0, column=3, padx=5, pady=5)
save_btn = ttk.Button(file_frame, text="保存系统参数", command=self.save_system)
save_btn.grid(row=0, column=4, padx=5, pady=5)
# 左侧面板 - 输入参数
left_frame = ttk.LabelFrame(main_frame, text="系统参数输入")
left_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True, padx=5, pady=5)
# 右侧面板 - 结果展示
right_frame = ttk.LabelFrame(main_frame, text="计算结果")
right_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5)
# 创建左侧面板的子组件
self.create_input_panel(left_frame)
# 创建右侧面板的子组件
self.create_result_panel(right_frame)
# 计算按钮
calc_frame = ttk.Frame(main_frame)
calc_frame.pack(fill=tk.X, padx=5, pady=10)
calc_btn = ttk.Button(calc_frame, text="开始计算", command=self.calculate, width=15)
calc_btn.pack(side=tk.LEFT, padx=10)
save_result_btn = ttk.Button(calc_frame, text="保存计算结果", command=self.save_results, width=15)
save_result_btn.pack(side=tk.LEFT, padx=10)
clear_btn = ttk.Button(calc_frame, text="清除所有", command=self.clear_all, width=15)
clear_btn.pack(side=tk.LEFT, padx=10)
def browse_file(self):
"""浏览文件按钮处理函数"""
file_path = filedialog.askopenfilename(
title="选择文件",
filetypes=[("JSON文件", "*.json"), ("所有文件", "*.*")]
)
if file_path:
self.file_path_entry.delete(0, tk.END)
self.file_path_entry.insert(0, file_path)
def create_input_panel(self, parent):
# 入瞳参数
pupil_frame = ttk.LabelFrame(parent, text="入瞳参数")
pupil_frame.pack(fill=tk.X, padx=5, pady=5)
ttk.Label(pupil_frame, text="入瞳直径 (mm):").grid(row=0, column=0, padx=5, pady=5, sticky="w")
self.entrance_diameter_entry = ttk.Entry(pupil_frame, width=15)
self.entrance_diameter_entry.grid(row=0, column=1, padx=5, pady=5)
ttk.Label(pupil_frame, text="入瞳位置 (mm):").grid(row=0, column=2, padx=5, pady=5, sticky="w")
self.entrance_position_entry = ttk.Entry(pupil_frame, width=15)
self.entrance_position_entry.grid(row=0, column=3, padx=5, pady=5)
# 色光类型选择
ttk.Label(pupil_frame, text="色光类型:").grid(row=1, column=0, padx=5, pady=5, sticky="w")
self.light_type_var = tk.StringVar(value="d")
self.light_type_combo = ttk.Combobox(pupil_frame, textvariable=self.light_type_var, width=12, state="readonly")
self.light_type_combo["values"] = ("d", "f", "c")
self.light_type_combo.grid(row=1, column=1, padx=5, pady=5, sticky="w")
# 物方参数
object_frame = ttk.LabelFrame(parent, text="物方参数")
object_frame.pack(fill=tk.X, padx=5, pady=5)
# 物距选择
self.object_var = tk.BooleanVar(value=True) # True: 无穷远, False: 有限远
ttk.Radiobutton(object_frame, text="物在无穷远", variable=self.object_var, value=True,
command=self.toggle_object_input).grid(row=0, column=0, padx=5, pady=5)
ttk.Radiobutton(object_frame, text="物在有限远", variable=self.object_var, value=False,
command=self.toggle_object_input).grid(row=0, column=1, padx=5, pady=5)
# 无穷远参数
self.infinite_frame = ttk.Frame(object_frame)
self.infinite_frame.grid(row=1, column=0, columnspan=2, sticky="w", padx=5, pady=5)
ttk.Label(self.infinite_frame, text="半视场角 (度):").grid(row=0, column=0, padx=5, pady=5, sticky="w")
self.field_angle_entry = ttk.Entry(self.infinite_frame, width=15)
self.field_angle_entry.grid(row=0, column=1, padx=5, pady=5)
# 有限远参数 (初始隐藏)
self.finite_frame = ttk.Frame(object_frame)
self.finite_frame.grid(row=1, column=0, columnspan=2, sticky="w", padx=5, pady=5)
self.finite_frame.grid_remove() # 初始隐藏
ttk.Label(self.finite_frame, text="物距 (mm):").grid(row=0, column=0, padx=5, pady=5, sticky="w")
self.object_distance_entry = ttk.Entry(self.finite_frame, width=15)
self.object_distance_entry.grid(row=0, column=1, padx=5, pady=5)
ttk.Label(self.finite_frame, text="物高 (mm):").grid(row=0, column=2, padx=5, pady=5, sticky="w")
self.object_height_entry = ttk.Entry(self.finite_frame, width=15)
self.object_height_entry.grid(row=0, column=3, padx=5, pady=5)
ttk.Label(self.finite_frame, text="孔径角 (度):").grid(row=0, column=4, padx=5, pady=5, sticky="w")
self.aperture_angle_entry = ttk.Entry(self.finite_frame, width=15)
self.aperture_angle_entry.grid(row=0, column=5, padx=5, pady=5)
# 光学表面输入
surface_frame = ttk.LabelFrame(parent, text="光学表面参数")
surface_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5)
# 表面输入控件
input_frame = ttk.Frame(surface_frame)
input_frame.pack(fill=tk.X, padx=5, pady=5)
ttk.Label(input_frame, text="曲率半径 (mm):").grid(row=0, column=0, padx=5, pady=5)
self.radius_entry = ttk.Entry(input_frame, width=10)
self.radius_entry.grid(row=0, column=1, padx=5, pady=5)
self.radius_entry.insert(0, "50")
ttk.Label(input_frame, text="厚度 (mm):").grid(row=0, column=2, padx=5, pady=5)
self.thickness_entry = ttk.Entry(input_frame, width=10)
self.thickness_entry.grid(row=0, column=3, padx=5, pady=5)
self.thickness_entry.insert(0, "5")
ttk.Label(input_frame, text="折射率 (nd):").grid(row=0, column=4, padx=5, pady=5)
self.nd_entry = ttk.Entry(input_frame, width=10)
self.nd_entry.grid(row=0, column=5, padx=5, pady=5)
self.nd_entry.insert(0, "1.5")
ttk.Label(input_frame, text="阿贝数 (vd):").grid(row=0, column=6, padx=5, pady=5)
self.vd_entry = ttk.Entry(input_frame, width=10)
self.vd_entry.grid(row=0, column=7, padx=5, pady=5)
self.vd_entry.insert(0, "60")
button_frame = ttk.Frame(input_frame)
button_frame.grid(row=0, column=8, padx=10)
add_btn = ttk.Button(button_frame, text="添加表面", command=self.add_surface)
add_btn.pack(side=tk.LEFT, padx=5)
remove_btn = ttk.Button(button_frame, text="删除表面", command=self.remove_surface)
remove_btn.pack(side=tk.LEFT, padx=5)
# 表面列表
list_frame = ttk.Frame(surface_frame)
list_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5)
columns = ("#", "曲率半径 (mm)", "厚度 (mm)", "折射率 (nd)", "阿贝数 (vd)")
self.surface_tree = ttk.Treeview(list_frame, columns=columns, show="headings", height=8)
for col in columns:
self.surface_tree.heading(col, text=col)
self.surface_tree.column(col, width=100, anchor=tk.CENTER)
vsb = ttk.Scrollbar(list_frame, orient="vertical", command=self.surface_tree.yview)
self.surface_tree.configure(yscrollcommand=vsb.set)
self.surface_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
vsb.pack(side=tk.RIGHT, fill=tk.Y)
def create_result_panel(self, parent):
# 结果文本框
self.result_text = tk.Text(parent, wrap=tk.WORD)
result_scroll_y = ttk.Scrollbar(parent, orient="vertical", command=self.result_text.yview)
result_scroll_x = ttk.Scrollbar(parent, orient="horizontal", command=self.result_text.xview)
self.result_text.configure(yscrollcommand=result_scroll_y.set, xscrollcommand=result_scroll_x.set)
result_scroll_y.pack(side=tk.RIGHT, fill=tk.Y)
result_scroll_x.pack(side=tk.BOTTOM, fill=tk.X)
self.result_text.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
# 设置初始文本
self.result_text.insert(tk.END, "计算结果将显示在此处...\n\n")
self.result_text.configure(state=tk.DISABLED)
def toggle_object_input(self):
"""切换物方参数输入界面"""
if self.object_var.get(): # 无穷远
self.infinite_frame.grid()
self.finite_frame.grid_remove()
else: # 有限远
self.infinite_frame.grid_remove()
self.finite_frame.grid()
def add_surface(self):
"""添加光学表面"""
try:
# 获取输入值
r = self.radius_entry.get().strip()
d = self.thickness_entry.get().strip()
nd = self.nd_entry.get().strip()
vd = self.vd_entry.get().strip()
# 处理输入值
r = float(r) if r and r.lower() != "inf" else float('inf')
d = float(d) if d else 0.0
nd = float(nd) if nd else 1.0
vd = float(vd) if vd else 0.0
# 添加到系统
surface = Surface(r, d, nd, vd)
self.system.surfaces.append(surface)
# 添加到树形视图
r_str = "平面" if r == float('inf') else f"{r:.2f}"
self.surface_tree.insert("", "end", values=(
len(self.system.surfaces),
r_str,
f"{d:.2f}",
f"{nd:.4f}",
f"{vd:.1f}"
))
# 清空输入框
self.radius_entry.delete(0, tk.END)
self.thickness_entry.delete(0, tk.END)
self.nd_entry.delete(0, tk.END)
self.vd_entry.delete(0, tk.END)
self.radius_entry.focus_set()
except ValueError:
messagebox.showerror("输入错误", "请输入有效的数字")
def remove_surface(self):
"""删除选中的光学表面"""
selected = self.surface_tree.selection()
if selected:
# 从树形视图中删除
for item in selected:
index = int(self.surface_tree.item(item, "values")[0]) - 1
self.surface_tree.delete(item)
# 从系统中删除
if 0 <= index < len(self.system.surfaces):
self.system.surfaces.pop(index)
# 更新剩余表面的序号
for i, item in enumerate(self.surface_tree.get_children()):
values = list(self.surface_tree.item(item, "values"))
values[0] = i + 1
self.surface_tree.item(item, values=values)
def load_system(self):
"""加载系统参数文件"""
file_path = self.file_path_entry.get().strip()
if not file_path:
messagebox.showwarning("警告", "请输入文件路径")
return
try:
with open(file_path, 'r') as f:
data = json.load(f)
# 加载系统参数
self.system.entrance_pupil_diameter = data.get("entrance_pupil_diameter")
self.system.entrance_pupil_position = data.get("entrance_pupil_position")
self.system.object_infinite = data.get("object_infinite", True)
self.system.field_angle = data.get("field_angle")
self.system.object_distance = data.get("object_distance")
self.system.object_height = data.get("object_height")
self.system.aperture_angle = data.get("aperture_angle")
# 更新UI中的参数值
if self.system.entrance_pupil_diameter is not None:
self.entrance_diameter_entry.delete(0, tk.END)
self.entrance_diameter_entry.insert(0, str(self.system.entrance_pupil_diameter))
if self.system.entrance_pupil_position is not None:
self.entrance_position_entry.delete(0, tk.END)
self.entrance_position_entry.insert(0, str(self.system.entrance_pupil_position))
self.object_var.set(self.system.object_infinite)
self.toggle_object_input()
if self.system.field_angle is not None:
self.field_angle_entry.delete(0, tk.END)
self.field_angle_entry.insert(0, str(self.system.field_angle))
if self.system.object_distance is not None:
self.object_distance_entry.delete(0, tk.END)
self.object_distance_entry.insert(0, str(self.system.object_distance))
if self.system.object_height is not None:
self.object_height_entry.delete(0, tk.END)
self.object_height_entry.insert(0, str(self.system.object_height))
if self.system.aperture_angle is not None:
self.aperture_angle_entry.delete(0, tk.END)
self.aperture_angle_entry.insert(0, str(self.system.aperture_angle))
# 加载表面数据
self.system.surfaces = []
self.surface_tree.delete(*self.surface_tree.get_children())
surfaces_data = data.get("surfaces", [])
for surf_data in surfaces_data:
surface = Surface.from_dict(surf_data)
self.system.surfaces.append(surface)
r_str = "平面" if surface.r == float('inf') else f"{surface.r:.2f}"
self.surface_tree.insert("", "end", values=(
len(self.system.surfaces),
r_str,
f"{surface.d:.2f}",
f"{surface.nd:.4f}",
f"{surface.vd:.1f}"
))
messagebox.showinfo("成功", f"系统参数已从 {os.path.basename(file_path)} 加载")
# 显示加载的系统信息
self.result_text.configure(state=tk.NORMAL)
self.result_text.delete(1.0, tk.END)
self.result_text.insert(tk.END, f"已加载系统参数文件: {file_path}\n")
self.result_text.insert(tk.END, f"包含 {len(self.system.surfaces)} 个光学表面\n")
self.result_text.configure(state=tk.DISABLED)
except FileNotFoundError:
messagebox.showerror("错误", f"文件不存在: {file_path}")
except Exception as e:
messagebox.showerror("加载错误", f"加载文件失败: {str(e)}")
def save_system(self):
"""保存系统参数文件"""
# 更新系统参数
if not self.update_system_from_ui():
return
# 如果没有表面数据,提示用户
if not self.system.surfaces:
messagebox.showwarning("警告", "没有光学表面数据,无法保存")
return
file_path = self.file_path_entry.get().strip()
if not file_path:
messagebox.showwarning("警告", "请输入保存路径")
return
try:
# 准备保存数据
data = {
"entrance_pupil_diameter": self.system.entrance_pupil_diameter,
"entrance_pupil_position": self.system.entrance_pupil_position,
"object_infinite": self.system.object_infinite,
"field_angle": self.system.field_angle,
"object_distance": self.system.object_distance,
"object_height": self.system.object_height,
"aperture_angle": self.system.aperture_angle,
"surfaces": [surf.to_dict() for surf in self.system.surfaces]
}
with open(file_path, 'w') as f:
json.dump(data, f, indent=4)
messagebox.showinfo("成功", f"系统参数已保存到 {os.path.basename(file_path)}")
# 显示保存信息
self.result_text.configure(state=tk.NORMAL)
self.result_text.insert(tk.END, f"系统参数已保存到: {file_path}\n")
self.result_text.configure(state=tk.DISABLED)
except Exception as e:
messagebox.showerror("保存错误", f"保存文件失败: {str(e)}")
def save_results(self):
"""保存计算结果到文件"""
if not self.system.results or all(v is None for v in self.system.results.values()):
messagebox.showwarning("警告", "没有计算结果可保存")
return
file_path = filedialog.asksaveasfilename(
title="保存计算结果",
defaultextension=".txt",
filetypes=[("文本文件", "*.txt"), ("所有文件", "*.*")]
)
if not file_path:
return
try:
with open(file_path, 'w') as f:
# 写入系统参数摘要
f.write("===== 光学系统参数 =====\n")
f.write(f"入瞳直径: {self.system.entrance_pupil_diameter} mm\n")
f.write(f"入瞳位置: {self.system.entrance_pupil_position} mm\n")
f.write(f"色光类型: {self.system.light_type}\n")
f.write("物距类型: " + ("无穷远" if self.system.object_infinite else "有限远") + "\n")
if self.system.object_infinite:
f.write(f"半视场角: {self.system.field_angle} 度\n")
else:
f.write(f"物距: {self.system.object_distance} mm\n")
f.write(f"物高: {self.system.object_height} mm\n")
f.write(f"孔径角: {self.system.aperture_angle} 度\n")
f.write("\n光学表面参数:\n")
for i, surf in enumerate(self.system.surfaces):
r_str = "平面" if surf.r == float('inf') else f"{surf.r:.2f} mm"
f.write(f"表面 {i+1}: r={r_str}, d={surf.d:.2f} mm, nd={surf.nd:.4f}, vd={surf.vd:.1f}\n")
# 写入计算结果
f.write("\n\n===== 计算结果 =====\n")
for key, value in self.system.results.items():
if value is not None:
# 格式化键名
label = self.format_result_label(key)
f.write(f"{label}: {value}\n")
messagebox.showinfo("成功", f"计算结果已保存到 {os.path.basename(file_path)}")
# 显示保存信息
self.result_text.configure(state=tk.NORMAL)
self.result_text.insert(tk.END, f"计算结果已保存到: {file_path}\n")
self.result_text.configure(state=tk.DISABLED)
except Exception as e:
messagebox.showerror("保存错误", f"保存计算结果失败: {str(e)}")
def format_result_label(self, key):
"""格式化结果标签为中文描述"""
labels = {
"focal_length": "焦距 f' (mm)",
"ideal_image_distance": "理想像距 l' (mm)",
"actual_image_position": "实际像位置 (mm)",
"image_principal_plane": "像方主面位置 lH' (mm)",
"exit_pupil_distance": "出瞳距 lp' (mm)",
"ideal_image_height": "理想像高 y0' (mm)",
"spherical_aberration": "球差 (mm)",
"longitudinal_chromatic": "位置色差 (mm)",
"tangential_field_curvature": "子午场曲 xt' (mm)",
"sagittal_field_curvature": "弧矢场曲 xs' (mm)",
"astigmatism": "像散 Δxts' (mm)",
"actual_image_height": "实际像高 (mm)",
"relative_distortion": "相对畸变 (%)",
"absolute_distortion": "绝对畸变 (mm)",
"lateral_chromatic": "倍率色差 (mm)",
"tangential_coma": "子午慧差 (mm)"
}
return labels.get(key, key)
def update_system_from_ui(self):
"""从UI更新系统参数"""
try:
# 入瞳参数
if self.entrance_diameter_entry.get():
self.system.entrance_pupil_diameter = float(self.entrance_diameter_entry.get())
if self.entrance_position_entry.get():
self.system.entrance_pupil_position = float(self.entrance_position_entry.get())
# 色光类型
self.system.light_type = self.light_type_var.get()
# 物方参数
self.system.object_infinite = self.object_var.get()
if self.system.object_infinite:
if self.field_angle_entry.get():
self.system.field_angle = float(self.field_angle_entry.get())
else:
if self.object_distance_entry.get():
self.system.object_distance = float(self.object_distance_entry.get())
if self.object_height_entry.get():
self.system.object_height = float(self.object_height_entry.get())
if self.aperture_angle_entry.get():
self.system.aperture_angle = float(self.aperture_angle_entry.get())
except ValueError:
messagebox.showerror("输入错误", "请输入有效的数字")
return False
return True
def calculate(self):
"""执行光学计算"""
# 更新系统参数
if not self.update_system_from_ui():
return
# 检查必要参数
if not self.system.surfaces:
messagebox.showwarning("警告", "请至少添加一个光学表面")
return
if self.system.entrance_pupil_diameter is None:
messagebox.showwarning("警告", "请输入入瞳直径")
return
if self.system.object_infinite and self.system.field_angle is None:
messagebox.showwarning("警告", "请输入半视场角")
return
if not self.system.object_infinite and (
self.system.object_distance is None or
self.system.object_height is None or
self.system.aperture_angle is None
):
messagebox.showwarning("警告", "请输入完整的有限远参数")
return
# 执行计算 - 这里调用您的计算函数
self.perform_calculations()
# 显示结果
self.display_results()
# 显示计算完成消息
messagebox.showinfo("计算完成", "光学计算已完成,结果已显示在结果区域")
def perform_calculations(self):
"""执行光学计算 - 这里调用您的实际计算函数"""
# 重置结果
for key in self.system.results:
self.system.results[key] = None
# 示例:设置一些假结果用于演示
# 实际应用中,您需要调用您自己的计算函数
self.system.results["focal_length"] = Calculate.calculate_focal_length(self.system)
self.system.results["ideal_image_distance"] = Calculate.calculate_ideal_image_distance(self.system)
self.system.results["actual_image_position"] = Calculate.calculate_actual_image_position(self.system)
self.system.results["image_principal_plane"] = Calculate.calculate_image_principal_plane(self.system)
self.system.results["exit_pupil_distance"] = Calculate.calculate_exit_pupil_distance(self.system)
self.system.results["ideal_image_height"] = Calculate.calculate_ideal_image_height(self.system)
self.system.results["spherical_aberration"] = Calculate.calculate_spherical_aberration(self.system)
self.system.results["longitudinal_chromatic"] = Calculate.calculate_longitudinal_chromatic(self.system)
self.system.results["tangential_field_curvature"] = 0.15
self.system.results["sagittal_field_curvature"] = 0.12
self.system.results["astigmatism"] = Calculate.calculate_astigmatism(self.system)
self.system.results["actual_image_height"] =Calculate.calculate_actual_image_height(self.system)
self.system.results["relative_distortion"] = -0.5
self.system.results["absolute_distortion"] = Calculate.calculate_distortion(self.system)
self.system.results["lateral_chromatic"] = Calculate.calculate_lateral_chromatic(self.system)
self.system.results["tangential_coma"] = Calculate.calculate_tangential_coma(self.system)
def display_results(self):
"""在结果文本框中显示计算结果"""
self.result_text.configure(state=tk.NORMAL)
self.result_text.delete(1.0, tk.END)
# 添加系统参数摘要
self.result_text.insert(tk.END, "===== 光学系统参数 =====\n", "title")
self.result_text.insert(tk.END, f"入瞳直径: {self.system.entrance_pupil_diameter} mm\n")
self.result_text.insert(tk.END, f"入瞳位置: {self.system.entrance_pupil_position} mm\n")
self.result_text.insert(tk.END, "物距类型: " + ("无穷远" if self.system.object_infinite else "有限远") + "\n")
self.result_text.insert(tk.END, f"色光类型: {self.system.light_type}\n")
if self.system.object_infinite:
self.result_text.insert(tk.END, f"半视场角: {self.system.field_angle} 度\n")
else:
self.result_text.insert(tk.END, f"物距: {self.system.object_distance} mm\n")
self.result_text.insert(tk.END, f"物高: {self.system.object_height} mm\n")
self.result_text.insert(tk.END, f"孔径角: {self.system.aperture_angle} 度\n")
self.result_text.insert(tk.END, "\n光学表面参数:\n")
for i, surf in enumerate(self.system.surfaces):
r_str = "平面" if surf.r == float('inf') else f"{surf.r:.2f} mm"
self.result_text.insert(tk.END,
f"表面 {i+1}: r={r_str}, d={surf.d:.2f} mm, nd={surf.nd:.4f}, vd={surf.vd:.1f}\n")
# 添加计算结果
self.result_text.insert(tk.END, "\n\n===== 计算结果 =====\n", "title")
# 计算关键结果
key_results = [
"focal_length", "ideal_image_distance", "actual_image_position",
"image_principal_plane", "exit_pupil_distance", "ideal_image_height"
]
for key in key_results:
if self.system.results[key] is not None:
label = self.format_result_label(key)
self.result_text.insert(tk.END, f"{label}: {self.system.results[key]}\n")
# 添加像差结果
self.result_text.insert(tk.END, "\n像差分析:\n", "subtitle")
aberrations = [
"spherical_aberration", "longitudinal_chromatic", "tangential_field_curvature",
"sagittal_field_curvature", "astigmatism", "actual_image_height",
"relative_distortion", "absolute_distortion", "lateral_chromatic", "tangential_coma"
]
for key in aberrations:
if self.system.results[key] is not None:
label = self.format_result_label(key)
self.result_text.insert(tk.END, f"{label}: {self.system.results[key]}\n")
self.result_text.configure(state=tk.DISABLED)
def clear_all(self):
"""清除所有输入和结果"""
# 清除系统参数
self.system = OpticalSystem()
# 清除UI输入
self.file_path_entry.delete(0, tk.END)
self.entrance_diameter_entry.delete(0, tk.END)
self.entrance_position_entry.delete(0, tk.END)
self.field_angle_entry.delete(0, tk.END)
self.object_distance_entry.delete(0, tk.END)
self.object_height_entry.delete(0, tk.END)
self.aperture_angle_entry.delete(0, tk.END)
self.radius_entry.delete(0, tk.END)
self.radius_entry.insert(0, "50")
self.thickness_entry.delete(0, tk.END)
self.thickness_entry.insert(0, "5")
self.nd_entry.delete(0, tk.END)
self.nd_entry.insert(0, "1.5")
self.vd_entry.delete(0, tk.END)
self.vd_entry.insert(0, "60")
# 清除表面列表
self.surface_tree.delete(*self.surface_tree.get_children())
self.system.surfaces = []
# 清除结果
self.result_text.configure(state=tk.NORMAL)
self.result_text.delete(1.0, tk.END)
self.result_text.insert(tk.END, "计算结果将显示在此处...\n\n")
self.result_text.configure(state=tk.DISABLED)
# 重置物距类型
self.object_var.set(True)
self.toggle_object_input()
messagebox.showinfo("清除完成", "所有输入和结果已清除")
def load_default_settings(self):
"""加载默认设置(可选)"""
# 这里可以添加加载默认设置的逻辑
pass
if __name__ == "__main__":
root = tk.Tk()
app = MainApplication(root)
# 设置文本样式
app.result_text.tag_config("title", font=("Arial", 10, "bold"))
app.result_text.tag_config("subtitle", font=("Arial", 9, "bold"))
root.mainloop()
以上光学计算程序,计算部分比较混乱,无法得到正确答案,请修改calculate类中的计算函数,优化程序