9、利用Azure服务进行决策与应用的全面指南

利用Azure服务进行决策与应用的全面指南

1. 异常检测(Anomaly Detector API)

在实际应用中,当需要检测问题并在出现异常时获得警告,Anomaly Detector API 是一个强大的工具。它可用于多种场景,如发现欺诈行为、检测物联网设备传感器故障、捕捉服务或用户活动模式变化、在故障开始时进行检测,甚至可以在金融市场中寻找异常模式。该 API 能够处理大规模数据,是微软用于监控自身云服务的工具。

其工作原理是,它设计用于处理实时或历史时间序列数据,可使用来自多个传感器的单个或多个指标。无需提供标记数据,就能确定数据点是否为异常,并判断是否需要发出警报。

若使用 Python 结合异常检测器,需安装 Pandas 数据分析库。可以使用 pip 安装它和 Azure 异常 SDK。代码示例如下:

import os
from azure.ai.anomalydetector import AnomalyDetectorClient
from azure.ai.anomalydetector.models import DetectRequest, TimeSeriesPoint, TimeGranularity, AnomalyDetectorError
from azure.core.credentials import AzureKeyCredential
import pandas as pd

SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"]
ANOMALY_DETECTOR_ENDPOINT = os.envi
内容概要:本文详细介绍了“秒杀商城”微服务架构的设计实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值