311. Sparse Matrix Multiplication
Given two sparse matrices A and B, return the result of AB.
You may assume that A’s column number is equal to B’s row number.
Example:
Input:
A = [
[ 1, 0, 0],
[-1, 0, 3]
]
B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]
Output:
| 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
| 0 0 1 |
方法1:
思路:
主要是需要sparse matrix里大量的0 产生的无用计算。那么什么样的计算才会真正影响结果呢?当A[i][k] !=0 && B[k][j] != 0。那么在每次循环之前检查一下,剪枝掉所有不需要的计算:任何一个数等于0就不需要进入循环。
Complexity
Time complexity: O(mkn)
Space comlexity: O(mn)
class Solution {
public:
vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) {
vector<vector<int>> result(A.size(), vector<int>(B[0].size(), 0));
for (int i = 0 ; i < A.size(); i++){
for (int k = 0; k < A[0].size(); k++){
if (A[i][k] != 0) {
for (int j = 0 ; j < B[0].size(); j++){
if (B[k][j] != 0) result[i][j] += A[i][k] * B[k][j];
}
}
}
}
return result;
}
};