上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值。(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的增强学习)。
那么如何求解最优策略呢?基本的解法有三种:
动态规划法(dynamic programming methods)
蒙特卡罗方法(Monte Carlo methods)
时间差分法(temporal difference)。
动态规划法是其中最基本的算法,也是理解后续算法的基础,因此本文先介绍动态规划法求解MDP。本文假设拥有MDP模型M=(S, A, Psa, R)的完整知识。
1. 贝尔曼方程(Bellman Equation)
上一篇我们得到了Vπ和Qπ的表达式,并且写成了如下的形式

在动态规划中,上面两个式子称为贝尔曼方程,它表明了当前状态的值函数与下个状态的值函数的关系。
优化目标π*可以表示为:
分别记最优策略π*对应的状态值函数和行为值函数为V*(s)和Q*(s, a),由它们的定义容易知道,V*(s)和Q*(s, a)
增强学习:MDP的动态规划解法详解
本文介绍了增强学习中求解马尔可夫决策过程(MDP)最优策略的基本方法——动态规划法,包括贝尔曼方程、策略估计、策略改进和值迭代。动态规划法提供了求解MDP的理论基础,但需要完整环境模型,适用于状态数量较小的情况。
订阅专栏 解锁全文
1093

被折叠的 条评论
为什么被折叠?



