增强学习(二)----- 马尔可夫决策过程MDP

本文介绍了马尔可夫决策过程MDP的基础概念,包括马尔可夫性、状态转移概率、回报函数和值函数。MDP是具有马尔可夫性的动态决策问题,考虑了当前状态和动作对系统影响。值函数用于评估策略的长期效果,而Q函数则进一步细化了动作的影响。通过一个格子世界的例子,解释了值函数和Q函数的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

1. 马尔可夫模型的几类子模型

大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM)。它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关。

马尔可夫决策过程(Markov Decision Process, MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关。还是举下棋的例子,当我们在某个局面(状态s)走了一步(动作a),这时对手的选择(导致下个状态s’)我们是不能确定的,但是他的选择只和s和a有关,而不用考虑更早之前的状态和动作,即s’是根据s和a随机生成的。

我们用一个二维表格表示一下,各种马尔可夫子模型的关系就很清楚了:

  不考虑动作 考虑动作
状态完全可见 马尔科夫链(MC) 马尔可夫决策过程(MDP)
状态不完全可见 隐马尔可夫模型(HMM) 不完全可观察马尔可夫决策过程(POMDP)

2. 马尔可夫决策过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值