半监督学习

半监督学习结合有标记和未标记数据,用于解决标记数据获取困难的问题。它包括自训练、生成模型、SVM等多种算法。通过利用无标记样本,半监督学习能提升模型的泛化能力,更好地拟合数据分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是半监督学习?


传统的机器学习技术分为两类,一类是无监督学习,一类是监督学习。

无监督学习只利用未标记的样本集,而监督学习则只利用标记的样本集进行学习。

但在很多实际问题中,只有少量的带有标记的数据,因为对数据进行标记的代价有时很高,比如在生物学中,对某种蛋白质的结构分析或者功能鉴定,可能会花上生物学家很多年的工作,而大量的未标记的数据却很容易得到。

这就促使能同时利用标记样本和未标记样本的半监督学习技术迅速发展起来。

 

半监督学习理论简述:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值