Python机器学习——线性模型

本文介绍了Python中的线性模型,包括最小二乘、岭回归、Lasso、Elastic Net、多任务Lasso和最小角回归。重点讨论了正则化参数的设置,如使用交叉验证和信息准则,并提供了具体的代码示例。还涵盖了Logistic回归的应用,展示了不同正则化系数对分类效果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近断断续续地在接触一些python的东西。按照我的习惯,首先从应用层面搞起,尽快入门,后续再细化一 些技术细节。找了一些资料,基本语法和数据结构搞定之后,目光便转到了scikit-learn这个包。这个包是基于scipy的统计学习包。里面所涵盖 的算法接口非常全面。更令人振奋的是,其用户手册写得非常好。然而,其被墙了(或者没有,或者有时被墙有时又好了)。笔者不会翻墙(请嘲笑吧),笔者只有 找代理,笔者要忍受各种弹窗。因此笔者决定,做一个记录,把这用户手册的内容多多少少搬一点到我的博客中来。以备查询方便。因此,笔者就动手了。

声明:如何安装python及其IDE,相关模块等等不在本系列博客的范围。本博客仅试图记录可能会用到的代码实例。

1.广义线性模型

这里的“广义线性模型”,是指线性模型及其简单的推广,包括岭回归,lasso,LAR,logistic回归,感知器等等。下面将介绍这些模型的基本想法,以及如何用python实现。

1.1.普通的最小二乘

LinearRegression 函数实现。最小二乘法的缺点是依赖于自变量的相关性,当出现复共线性时,设计阵会接近奇异,因此由最小二乘方法得到的结果就非常敏感࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值