【Python应用实战】线性回归(附Python代码)

本文详细介绍了线性回归,包括简单线性回归和多元线性回归的原理和应用。通过实例展示了如何使用Python进行线性回归模型的建立、诊断与优化,包括残差分析、异方差性处理、强影响点识别和多重共线性分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归

 

相关分析:一个连续变量与一个连续变量间的关系。

双样本t检验:一个二分分类变量与一个连续变量间的关系。

方差分析:一个多分类分类变量与一个连续变量间的关系。

卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。

本次介绍:

线性回归:多个连续变量与一个连续变量间的关系。

其中线性回归分为简单线性回归多元线性回归

/ 01 / 数据分析与数据挖掘

数据库:一个存储数据的工具。因为Python是内存计算,难以处理几十G的数据,所以有时数据清洗需在数据库中进行。

统计学:针对小数据的数据分析方法,比如对数据抽样、描述性分析、结果检验。

人工智能/机器学习/模式识别:神经网络算法,模仿人类神经系统运作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值