机器学习算法精讲20篇(一)-k-means聚类算法应用案例(附示例代码)

本文详述k-means聚类算法,包括其原理、步骤、优化方法(k-means++)、小批量处理、簇类个数选取策略,并探讨了k-means在各向异性、非凸数据、标准差不等及高维数据等场景的局限性,同时与knn算法进行了对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

k-means算法是非监督聚类最常用的一种方法,因其算法简单和很好的适用于大样本数据,广泛应用于不同领域,本文详细总结了k-means聚类算法原理 。

以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟!

MATLAB-30天带你从入门到精通

MATLAB深入理解高级教程(附源码)

tableau可视化数据分析高级教程

1. k-means聚类算法原理

若簇类相似度好簇间的相似度差,则聚类算法的性能较好。我们基于此定义k-means聚类算法的目标函数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值