深度学习核心技术精讲100篇(五十三)-机器学习中的隐私保护

本文探讨了机器学习中的隐私保护问题,包括信息隐私、隐私泄露的危害,并介绍了数据匿名化技术和差分隐私技术。数据匿名化通过K-匿名、L-散度和T-保密等方法降低隐私泄露风险,而差分隐私通过在模型训练中引入噪声来保护数据隐私。然而,更严格的隐私保护可能导致模型性能下降。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

近年来,随着 GDPR 通用数据保护条例出台以及一些互联网公司数据隐私泄漏等事件的发生,数据隐私的保护问题在行业应用中备受关注。与数据密切相关的机器学习算法的安全性成为一个巨大挑战。本文将介绍在机器学习领域中数据隐私安全的相关工作,并介绍第四范式在差分隐私算法效果提升上所做的工作。

主要和大家分享数据隐私的3方面:

  • 隐私保护的问题与案例

  • 基于数据的隐私保护技术:数据匿名化

  • 机器学习模型训练中的隐私保护技术:差分隐私

机器学习中的隐私保护问题

1. 信息隐私

信息隐私 ( Privacy ):指的是当一个组织内敏感数据被拥有权限的人员所使用于某些技术、过程 ( 如数据分析、训练模型 ) 时,对数据敏感信息进行保护的过程与规则。

数据的隐私 ( Privacy ) 与安全 ( Security ) 并不等价:有的时候很多人提到数据隐私时,会与数据安全混为一谈,但其实两者并不等价。数据安全通常指防止数据被非法访问;而数据隐私则一般指

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值