lintcode--二叉树的前序遍历

本文介绍了一种使用栈实现二叉树前序遍历的方法。通过将根节点入栈,不断出栈并访问节点,再将左右子节点依次入栈的方式完成遍历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给出一棵二叉树,返回其节点值的前序遍历。

样例

给出一棵二叉树 {1,#,2,3},

   1
    \
     2
    /
   3

 返回 [1,2,3].



/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 *  维护一个栈,将根节点入栈,然后只要栈不为空,出栈并访问,接着依次将访问节点的右节点、左节点入栈。 
     * 这种方式应该是对先序遍历的一种特殊实现(看上去简单明了),但是不具备很好的扩展性,在中序和后序方式中不适用 
 */
public class Solution {
    
    public List<Integer> preorderTraversal(TreeNode root){
        Stack<TreeNode> stack = new Stack<TreeNode>();
        List<Integer> list = new ArrayList<Integer>();
        if(root == null) return list;
        //先保存根结点
        stack.push(root);
        while(!stack.empty()){
            TreeNode head = stack.pop();
            list.add(head.val);
            //先右进栈
            if(head.right != null){
                stack.push(head.right);
            }
            //再左进栈
            if(head.left != null){
                stack.push(head.left);
            }
        }
        return list;
    }
}

内容概要:本文详细介绍了扫描单分子定位显微镜(scanSMLM)技术及其在三维超分辨体积成像中的应用。scanSMLM通过电调透镜(ETL)实现快速轴向扫描,结合4f检测系统将不同焦平面的荧光信号聚焦到固定成像面,从而实现快速、大视场的三维超分辨成像。文章不仅涵盖了系统硬件的设计与实现,还提供了详细的软件代码实现,包括ETL控制、3D样本模拟、体积扫描、单分子定位、3D重建分子聚类分析等功能。此外,文章还比较了循环扫描与常规扫描模式,展示了前者在光漂白效应上的优势,并通过荧光珠校准、肌动蛋白丝、线粒体网络流感A病毒血凝素(HA)蛋白聚类的三维成像实验,验证了系统的性能应用潜力。最后,文章深入探讨了HA蛋白聚类与病毒感染的关系,模拟了24小时内HA聚类的动态变化,提供了从分子到细胞尺度的多尺度分析能力。 适合人群:具备生物学、物理学或工程学背景,对超分辨显微成像技术感兴趣的科研人员,尤其是从事细胞生物学、病毒学或光学成像研究的科学家技术人员。 使用场景及目标:①理解掌握scanSMLM技术的工作原理及其在三维超分辨成像中的应用;②学习如何通过Python代码实现完整的scanSMLM系统,包括硬件控制、图像采集、3D重建数据分析;③应用于单分子水平研究细胞内结构动态过程,如病毒入侵机制、蛋白质聚类等。 其他说明:本文提供的代码不仅实现了scanSMLM系统的完整工作流程,还涵盖了多种超分辨成像技术的模拟比较,如STED、GSDIM等。此外,文章还强调了系统在硬件改动小、成像速度快等方面的优势,为研究人员提供了从理论到实践的全面指导。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值