二叉树常见的面试题(1)

本文介绍了一种通用的二叉树数据结构实现方法,包括递归与非递归方式下的遍历算法,如前序、中序、后序及层序遍历等,并详细解释了二叉树的创建、查找、镜像翻转等功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#pragma once
#include<iostream>
#include<windows.h>
#include<string.h>
#include<queue>
#include<stack>
using namespace std;

// 孩子表示法
template<class T>
struct BinaryTreeNode
{
    BinaryTreeNode(const T& value)
    : _value(value)
    , _pLeft(NULL)
    , _pRight(NULL)
    {}
    T _value;
    BinaryTreeNode<T>* _pLeft;   // 左孩子
    BinaryTreeNode<T>* _pRight;  // 右孩子
};
//创建(遍历)二叉树的时间复杂度O(N)
template<class T>
class BinaryTree
{
    typedef BinaryTreeNode<T> Node;
public:
    BinaryTree()
        : _pRoot(NULL)
    {}
    BinaryTree(const T arr[], size_t size, const T& invalid)
    {
        size_t index = 0;
        _CreateBinaryTree(_pRoot, arr, size, index, invalid);
    }
    BinaryTree(const BinaryTree<T>& bt)
    {
        _pRoot = _CopyBirnaryTree(bt._pRoot);
    }

    BinaryTree<T>& operator=(const BinaryTree<T>& bt)
    {
        if (this != &bt)
        {
            _DestroyBinaryTree(_pRoot);
            _pRoot=_CopyBirnaryTree(bt._pRoot);
        }
        return *this;
    }

    ~BinaryTree()
    {
        _DestroyBinaryTree(_pRoot);
    }


    ///////////////////////////////////////////////////////////////
    void PreOrder()
    {
        cout << "PreOrder:" << endl;
        _PreOrder(_pRoot);
        cout << endl;
    }

    void PreOrder_Nor()
    {
        cout << "PreOrder_Nor:" << endl;
        _PreOrder_Nor(_pRoot);
        cout << endl;
    }

    void InOrder()
    {
        cout << "InOrder:" << endl;
        _InOrder(_pRoot);
        cout << endl;
    }
    void InOrder_Nor()
    {
        cout << "InOrder_Nor:" << endl;
        _InOrder_Nor(_pRoot);
        cout << endl;
    }
    void PostOrder()
    {
        cout << "PostOrder:" << endl;
        _PostOrder(_pRoot);
        cout << endl;
    }
    void PostOrder_Nor()
    {
        cout << "PostOrder_Nor:" << endl;
        _PostOrder_Nor(_pRoot);
        cout << endl;
    }
    void LevelOrder()//******考点********队列***
    {
        cout << "LevelOrde:" << endl;
        _LevelOrder(_pRoot);
        cout << endl;
    }

    Node* Find(const T& value)
    {
        return _Find(_pRoot, value);
    }
    //二叉树中和为某一值的路径
    void FindPath(size_t WantSum)
    {
        size_t Cursum = 0;
        vector<int>path;
        _FindPath(_pRoot, WantSum, path, Cursum);
    }
    Node* Parent(Node* pCur)
    {
        return _Parent(_pRoot, pCur);
    }
    Node* GetLeftChild(Node* pCur)
    {
        return (pCur == NULL) ? NULL : pCur->_pLeft;
    }

    Node* GetRightChild(Node* pCur)
    {
        return (pCur == NULL) ? NULL : pCur->_pRight;
    }

    size_t Height()
    {
        return _Height(_pRoot);
    }
    size_t GetLeefCount()
    {
        return _GetLeefCount(_pRoot);
    }

    size_t GetKLevelCount(size_t k)
    {
        return _GetKLevelCount(_pRoot, k);
    }

    void BinaryMirror_Nor()
    {
        return _BinaryMirror_Nor();
    }
    void BinaryMirror()
    {
        return _BinaryMirror(_pRoot);
    }

private:
    // 根—左—右  —>构造二叉树
    void _CreateBinaryTree(Node* &pRoot, const T arr[], size_t size, size_t& index, const T& invalid)
    {
        if (index < size&&arr[index] != invalid)//顺序不能颠倒,防止越界访问
        {
            //创建根节点
            pRoot = new Node(arr[index]);
            //创建左孩子节点
            _CreateBinaryTree(pRoot->_pLeft, arr, size, ++index, invalid);
            //创建右孩子节点(看不见右孩子创建节点过程)
            _CreateBinaryTree(pRoot->_pRight, arr, size, ++index, invalid);
        }
    }
    // pRoot-->被拷贝树的根节点
    Node* _CopyBirnaryTree(Node* pRoot)
    {
        Node* pNewRoot = NULL;
        if (pRoot)
        {
            pNewRoot = new Node(pRoot[0]);//拷贝根节点
            pNewRoot->_pLeft = _CopyBirnaryTree(pRoot->_pLeft); //拷贝左子树
            pNewRoot->_pRight = _CopyBirnaryTree(pRoot->_pRight);//拷右左子树
        }
        return pNewRoot;
    }
    void _DestroyBinaryTree(Node*& pRoot)
    {
        if (pRoot)
        {
            _DestroyBinaryTree(pRoot->_pLeft);
            _DestroyBinaryTree(pRoot->_pRight);
            delete pRoot;
            pRoot = NULL;
        }
    }
    ////////////////////////////////////////////////////////////////
    //前序遍历递归
    // 前序:访问根节点--->访问根节点的左子树--->访问根节点的右子树
    void _PreOrder(Node* pRoot)  
    {
        if (pRoot)
        {
            cout << pRoot->_value << " ";
            _PreOrder(pRoot->_pLeft);
            _PreOrder(pRoot->_pRight);
        }
    }
    //前序遍历非递归
    void _PreOrder_Nor(Node*pRoot)
    {
        if (NULL == pRoot)
            return;
        stack<Node*>s;
        s.push(pRoot);
        while (!s.empty())
        {
            Node*pCur = s.top();
            cout << pCur->_value << " ";
            s.pop();
            if (pCur->_pRight)
                s.push(pCur->_pRight);
            if (pCur->_pLeft)
                s.push(pCur->_pLeft);
        }
    }
    //中序遍历递归
    void _InOrder(Node* pRoot)
    {
        if (pRoot)
        { 
            _InOrder(pRoot->_pLeft);
            cout << pRoot->_value << " ";
            _InOrder(pRoot->_pRight);
        }
    }
    //中序遍历非递归
    void _InOrder_Nor(Node*pRoot)
    {
        if (NULL == pRoot)
            return;
        stack<Node*>s;
        Node*pCur = pRoot;
        while (pCur || !s.empty())
        {
            while (pCur)
            {  // 找到最左边的孩子,并把所经过路径的结点保存下来
                s.push(pCur);
                pCur = pCur->_pLeft;
            }
            //出了内层循环,pCur为空,栈顶元素为最左边的孩子
            pCur = s.top();
            cout << pCur->_value << " ";
            s.pop();
            pCur = pCur->_pRight;
        }
    }

    // 后序遍历:遍历根的左子树-->遍历根的右子树-->遍历根节点
    void _PostOrder(Node* pRoot)
    {
        if (pRoot)
        {
            _PostOrder(pRoot->_pLeft);
            _PostOrder(pRoot->_pRight);
            cout << pRoot->_value << " ";
        }
    }
    //后序遍历非递归
    void _PostOrder_Nor(Node*pRoot)
    {
        if (NULL == pRoot)
            return;
        stack<Node*>s;
        Node*pCur = pRoot;
        Node*Prev = NULL;//保存上次入栈的结点
        while (pCur || !s.empty())
        {
            while (pCur)
            {  // 找到最左边的孩子,并把所经过路径的结点保存下来
                s.push(pCur);
                pCur = pCur->_pLeft;
            }
            Node*pTop = s.top();
            if (NULL == pTop->_pRight || Prev == pTop->_pRight)//没有Prev == pTop->_pRight会4256666666......死循环下去
            {
                cout << pTop->_value << " ";
                Prev = pTop; //保存上次入栈的结点
                s.pop();
            }
            else
            {
                pCur = pTop;//pCur在while出来之后为NULL,所以要更新pCur的值,少了这句,崩溃
                pCur = pCur->_pRight;
            }
        }
    }

    // 层序遍历
    void _LevelOrder(Node*pRoot)//******考点********队列***
    {
        if (NULL == pRoot)
            return;
        queue<Node*>q;
        q.push(pRoot);//保存的是结点的地址,地址出了队列,但是树并没有改变
        while (!q.empty())
        {
            Node*pcur = q.front();
            cout << pcur->_value << " ";
            if (pcur->_pLeft)//左不为空入队列
            {
                q.push(pcur->_pLeft);
            }
            if (pcur->_pRight)//右不为空入队列
            {
                q.push(pcur->_pRight);
            }
            q.pop();
        }
        cout << endl;
    }

    //二叉树中和为某一值的路径
    void _FindPath(Node*pRoot, size_t WantSum, vector<int>&path, size_t CurSum)
    {
        CurSum += pRoot->_value;
        path.push_back(pRoot->_value);
        //如果是叶子结点,并且路径上结点的和等于输入的值,打印这条路径
        if (CurSum == WantSum&&NULL == pRoot->_pLeft&&NULL == pRoot->_pRight)
        {
            cout << WantSum << "path is found:" << endl;
            vector<int>::iterator it = path.begin();
            while (!path.empty() && it != path.end())
            {
                cout << *it << " ";
                it++;
            }
            cout << endl;
        }
        if (pRoot->_pLeft)
        {
            _FindPath(pRoot->_pLeft, WantSum, path, CurSum);
        }
        if (pRoot->_pRight)
        {
            _FindPath(pRoot->_pRight, WantSum, path, CurSum);
        }
        //在返回父节点之前,在路径上删除当前节点
        path.pop_back();
    }

    //树中查找一个节点
    Node* _Find(Node* pRoot, const T& value)
    { 
        Node*pCur = NULL;
        if (NULL == pRoot)
            return NULL;
        if (pRoot->_value == value)
        {
            return pRoot;
        }
        pCur = _Find(pRoot->_pLeft, value);
        if (NULL!=pCur)
           return pCur;
        return _Find(pRoot->_pRight, value);
    }
    //求一个节点的双亲
    Node* _Parent(Node* pRoot, Node* pCur)
    {
        if (NULL == pRoot)//树空
            return NULL;
        if (NULL==pRoot->_pLeft&&NULL == pRoot->_pRight)//只有一个节点
            return NULL;
        if (pRoot == pCur)
            return NULL;//所找结点刚好为根结点
        if (pCur == pRoot->_pLeft || pCur == pRoot->_pRight)
            return pRoot;
        Node*parent = NULL;
        parent = _Parent(pRoot->_pLeft, pCur);//从左子树中找
        if (NULL != pCur)
            return pCur;
        return _Parent(pRoot->_pLeft, pCur);//从右子树中找
    }
    //求二叉树的高度
    size_t _Height(Node* pRoot)
    {
        if (NULL == pRoot)
            return 0;
        if (NULL == pRoot->_pLeft&&NULL == pRoot->_pRight)//一个节点
            return 1;
        size_t Left_Height=_Height(pRoot->_pLeft);//左子树的高度
        size_t Right_Height = _Height(pRoot->_pRight);//右子树的高度
        return Left_Height > Right_Height ? Left_Height + 1 : Right_Height + 1;
    }
    //求叶子节点的个数
    size_t _GetLeefCount(Node* pRoot)
    {
        if (NULL == pRoot)
            return 0;
        if (NULL == pRoot->_pLeft&&NULL == pRoot->_pRight)//一个节点
            return 1;
        size_t Left_LeefCount=_GetLeefCount(pRoot->_pLeft);
        size_t Right_LeefCount = _GetLeefCount(pRoot->_pRight);
        return Left_LeefCount + Right_LeefCount;
    }
    //求第K层节点的个数
    size_t _GetKLevelCount(Node* pRoot, size_t k)
    {
        if (NULL == pRoot || k<1)//此处省略了K>Height(_pRoot),因为大于树的
            return 0;           //高度时返回0
        if (k == 1)
            return 1;
        size_t LeftKLevelCount=_GetKLevelCount(pRoot->_pLeft, k - 1);
        size_t RighttKLevelCount = _GetKLevelCount(pRoot->_pRight, k - 1);
        return LeftKLevelCount + RighttKLevelCount;
    }


    //二叉树的镜像—递归
    void _BinaryMirror(Node* pRoot)
    {
        if (NULL == pRoot)
            return;
        swap(pRoot->_pLeft, pRoot->_pRight);
        _BinaryMirror(pRoot->_pLeft);
        _BinaryMirror(pRoot->_pRight);
    }
    //二叉树的镜像—非递归
    void _BinaryMirror_Nor()
    {
        if (NULL == _pRoot)
            return;
        queue<Node*>q;
        q.push(_pRoot);
        while (!q.empty())
        {
            Node*pCur = q.front();
            if (pCur)
            {
                q.push(pCur->_pLeft);
            }
            if (pCur)
            {
                q.push(pCur->_pRight);
            }
            if (NULL!=pCur)//必须判断
            swap(pCur->_pLeft, pCur->_pRight);
            q.pop();
        }
    }
private:
    Node* _pRoot;   // 指向树的根节点
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值