题目链接
https://www.luogu.com.cn/problem/P3205
思路
f [ i ] [ j ] [ 0 ] f[i][j][0] f[i][j][0]表示区间 [ i , j ] [i,j] [i,j]最后一个加入队列的是第 i i i个元素。
f [ i ] [ j ] [ 1 ] f[i][j][1] f[i][j][1]表示区间 [ i , j ] [i,j] [i,j]最后一个加入队列的是第 j j j个元素。
则状态转移方程为:
i
f
(
a
[
i
]
<
a
[
i
+
1
]
)
f
[
i
]
[
j
]
[
0
]
+
=
f
[
i
+
1
]
[
j
]
[
0
]
if (a[i] < a[i + 1]) f[i][j][0] += f[i + 1][j][0]
if(a[i]<a[i+1])f[i][j][0]+=f[i+1][j][0]
i
f
(
a
[
i
]
<
a
[
j
]
)
f
[
i
]
[
j
]
[
0
]
+
=
f
[
i
+
1
]
[
j
]
[
1
]
if (a[i] < a[j]) f[i][j][0] += f[i + 1][j][1]
if(a[i]<a[j])f[i][j][0]+=f[i+1][j][1]
i
f
(
a
[
j
]
>
a
[
i
]
)
f
[
i
]
[
j
]
[
1
]
+
=
f
[
i
]
[
j
−
1
]
[
0
]
if (a[j] > a[i]) f[i][j][1] += f[i][j - 1][0]
if(a[j]>a[i])f[i][j][1]+=f[i][j−1][0]
i
f
(
a
[
j
]
>
a
[
j
−
1
]
)
f
[
i
]
[
j
]
[
1
]
+
=
f
[
i
]
[
j
−
1
]
[
1
]
if (a[j] > a[j - 1]) f[i][j][1] += f[i][j - 1][1]
if(a[j]>a[j−1])f[i][j][1]+=f[i][j−1][1]
边界为: f [ i ] [ i ] [ 0 ] = 1 f[i][i][0] = 1 f[i][i][0]=1,同时设置 f [ i ] [ i ] [ 1 ] = 0 f[i][i][1]=0 f[i][i][1]=0,因为只有一个人时只会有一种方案。
代码
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define double long double
typedef long long i64;
typedef unsigned long long u64;
typedef pair<int, int> pii;
const int N = 1e3 + 5, M = 1e3 + 5;
const int mod = 19650827;
const int inf = LLONG_MAX;
std::mt19937 rnd(time(0));
int n;
int a[N], f[N][N][2];
int MOD(int x)
{
return (x % mod + mod) % mod;
}
void solve(int test_case)
{
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
for (int i = 1; i <= n; i++)
{
f[i][i][0] = 1;
}
for (int len = 2; len <= n; len++)
{
for (int i = 1; i + len - 1 <= n; i++)
{
int j = i + len - 1;
if (a[i] < a[i + 1]) f[i][j][0] += f[i + 1][j][0];
if (a[i] < a[j]) f[i][j][0] += f[i + 1][j][1];
f[i][j][0] %= mod;
if (a[j] > a[i]) f[i][j][1] += f[i][j - 1][0];
if (a[j] > a[j - 1]) f[i][j][1] += f[i][j - 1][1];
f[i][j][1] %= mod;
}
}
cout << MOD(f[1][n][0] + f[1][n][1]) << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int test = 1;
// cin >> test;
for (int i = 1; i <= test; i++)
{
solve(i);
}
return 0;
}