利用Python爬虫爬取淘宝商品做数据挖掘分析实战篇,超详细教程

本教程通过Python爬虫爬取淘宝沙发类目商品,进行数据清洗、分析和可视化,包括词云、销量、价格分布等。使用jieba分词、matplotlib和seaborn等工具,探讨商品标题、销量、价格和省份分布等关键指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如需完整代码,加 LiteMango(付费)

项目内容

本案例选择>> 商品类目:沙发;

数量:共100页 4400个商品;

筛选条件:天猫、销量从高到低、价格500元以上。

以下是分析,源码点击文末链接

项目目的

1. 对商品标题进行文本分析 词可视化

2. 不同关键词word对应的sales的统计分析

3. 商品的价格分布情况分析

4. 商品的销量分布情况分析

5. 不同价格区间的商品的平均销量分布

6. 商品价格对销量的影响分析

7. 商品价格对销售额的影响分析

8. 不同省份或城市的商品数量分布

9.不同省份的商品平均销量分布

注:本项目仅以以上几项分析为例。

项目步骤

1. 数据采集:Python爬取淘宝网商品数据

2. 对数据进行清洗和处理

3. 文本分析:jieba分词、wordcloud可视化

4. 数据柱形图可视化 barh

5. 数据直方图可视化 hist

6. 数据散点图可视化 scatter

7. 数据回归分析可视化 regplot

工具&模块:

工具:本案例代码编辑工具 Anaconda的Spyder

模块:requests、retrying、missingno、jieba、matplotlib、wordcloud、imread、seaborn 等。

原代码和相关文档文末自取

一、爬取数据

因淘宝网是反爬虫的,虽然使用多线程、修改headers参数,但仍然不能保证每次100%爬取,所以 我增加了循环爬取,每次循环爬取未爬取成功的页 直至所有页爬取成功停止。

说明:淘宝商品页为JSON格式 这里使用正则表达式进行

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值