快速排序
时间复杂度:最好情况O(nlong(n)),最坏情况O(n^2)
思路:选择一个基准,将比他小的挪到他的前边,比他大的挪到他的后边
public class Main {
private static void quickSort(int[] arr, int l, int r) {
if (l >= r) {
return;
}
int i = l - 1;
int j = r + 1;
int x = arr[l+r>>1];
while(i<j){
do i++;while(arr[i]<x);
do j--;while(arr[j]>x);
if(i<j){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
quickSort(arr,l,j);
quickSort(arr,j+1,r);
}
public static void main(String[] args) {
int[] arr = {3, 7, 2, 9, 1, 5, 8, 6};
quickSort(arr,0,arr.length-1);
for(int num : arr){
System.out.println(num);
}
}
}
归并排序
时间复杂度:最佳情况(O(n log n)),平均情况(O(n log n)),最差情况(O(n log n))
采用分治的思想,先局部有序再整体有序
public class Main {
private static void mergeSort(int[] arr, int l, int r) {
if (l >= r) {
return;
}
int[] res = new int[arr.length];
int mid = l + r >> 1;
mergeSort(arr, l, mid);
mergeSort(arr, mid + 1, r);
int num = 0;
int i = l;
int j = mid + 1;
while (i <= mid && j <= r) {
if (arr[i] < arr[j]) res[num++] = arr[i++];
else res[num++] = arr[j++];
}
while (i <= mid) res[num++] = arr[i++];
while (j <= r) res[num++] = arr[j++];
for (i = l, j = 0; i <= r; i++, j++) {
arr[i] = res[j];
}
}
public static void main(String[] args) {
int[] arr = {3, 1, 4, 2, 5, 6, 0};
mergeSort(arr, 0, arr.length - 1);
for (int num : arr) {
System.out.println(num);
}
}
}
单例模式
public class Main {
public static void main(String[] args) {
// 创建多个线程来获取单例实例
Runnable task = () -> {
Singleton singleton = Singleton.getInstance();
singleton.showMessage();
};
// 创建10个线程并启动它们
for (int i = 0; i < 10; i++) {
new Thread(task).start();
}
}
}
class Singleton {
// volatile 关键字确保 instance 的可见性和禁止指令重排序
private static volatile Singleton instance = null;
// 私有构造函数,防止实例化
private Singleton() {
// 可以在这里初始化一些资源
}
// 获取单例实例的方法,使用双重检查锁定
public static Singleton getInstance() {
if (instance == null) { // 第一次检查:如果实例已被创建,就直接返回实例,避免了不必要的加锁操作。
synchronized (Singleton.class) { // 加锁只有在第一次检查确定 instance 为 null 时,才进入同步块。
if (instance == null) { // 第二次检查在同步块内再次检查 instance 是否为 null,确保只有一个线程能够创建实例。
instance = new Singleton();
}
}
}
return instance;
}
// 一个简单的方法,用于测试单例类的功能
public void showMessage() {
System.out.println("Hello, I am a singleton!");
}
}
public enum Singleton {
// 定义枚举实例,这个就是单例对象
INSTANCE;
// 单例类的成员方法
public void showMessage() {
System.out.println("Hello, I am a singleton using Enum!");
}
}
public class Main {
public static void main(String[] args) {
// 获取单例实例并调用方法
Singleton singleton = Singleton.INSTANCE;
singleton.showMessage();
// 验证多个线程访问是否是同一个实例
Runnable task = () -> {
Singleton s = Singleton.INSTANCE;
System.out.println("Instance: " + s.hashCode());
};
// 启动多个线程进行验证
for (int i = 0; i < 10; i++) {
new Thread(task).start();
}
}
}
多线程交替打印奇偶数
public class Main {
private static final int max = 10;
private static final Object lock = new Object();
private static boolean isOddTurn = true; // 标识当前是否应该打印奇数
public static void main(String[] args) {
Thread thread1 = new Thread(() -> {
for (int i = 1; i <= max; i += 2) {
synchronized (lock) {
while (!isOddTurn) {
try {
lock.wait();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
System.out.println("奇数:" + i);
isOddTurn = false;
lock.notify(); // 唤醒偶数线程
}
}
});
Thread thread2 = new Thread(() -> {
for (int i = 2; i <= max; i += 2) {
synchronized (lock) {
while (isOddTurn) {
try {
lock.wait();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
System.out.println("偶数:" + i);
isOddTurn = true;
lock.notify(); // 唤醒偶数线程
}
}
});
thread1.start();
thread2.start();
}
}
信号量机制的实现方法
public class Main {
private static final int MAX = 10; // 打印的最大数字
private static final Object lock = new Object();
private static boolean isOddTurn = true; // 标识当前是否应该打印奇数
public static void main(String[] args) {
// 奇数线程
Thread oddThread = new Thread(() -> {
for (int i = 1; i <= MAX; i += 2) {
synchronized (lock) {
while (!isOddTurn) { // 如果不是奇数线程的执行时机,则等待
try {
lock.wait();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
System.out.println("奇数: " + i);
isOddTurn = false; // 该偶数线程执行了
lock.notify(); // 唤醒偶数线程
}
}
});
// 偶数线程
Thread evenThread = new Thread(() -> {
for (int i = 2; i <= MAX; i += 2) {
synchronized (lock) {
while (isOddTurn) { // 如果不是偶数线程的执行时机,则等待
try {
lock.wait();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
System.out.println("偶数: " + i);
isOddTurn = true; // 该奇数线程执行了
lock.notify(); // 唤醒奇数线程
}
}
});
// 启动两个线程
oddThread.start();
evenThread.start();
}
}
三个线程交替打印
public class ThreeThreadPrinter {
private static final int MAX = 9; // 每个线程打印的最大数字
private static final Object lock = new Object();
private static int current = 1; // 当前应该由哪个线程打印,1表示线程1,2表示线程2,3表示线程3
public static void main(String[] args) {
// 线程1,打印1, 4, 7
Thread t1 = new Thread(() -> {
for (int i = 1; i <= MAX; i += 3) {
synchronized (lock) { // 获取锁
while (current != 1) { // 如果不是线程1的执行时机,则等待
try {
lock.wait(); // 进入等待状态
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
System.out.println("Thread 1: " + i); // 打印数字
current = 2; // 设置为线程2的执行时机
lock.notifyAll(); // 唤醒其他线程
}
}
});
// 线程2,打印2, 5, 8
Thread t2 = new Thread(() -> {
for (int i = 2; i <= MAX; i += 3) {
synchronized (lock) { // 获取锁
while (current != 2) { // 如果不是线程2的执行时机,则等待
try {
lock.wait(); // 进入等待状态
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
System.out.println("Thread 2: " + i); // 打印数字
current = 3; // 设置为线程3的执行时机
lock.notifyAll(); // 唤醒其他线程
}
}
});
// 线程3,打印3, 6, 9
Thread t3 = new Thread(() -> {
for (int i = 3; i <= MAX; i += 3) {
synchronized (lock) { // 获取锁
while (current != 3) { // 如果不是线程3的执行时机,则等待
try {
lock.wait(); // 进入等待状态
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
System.out.println("Thread 3: " + i); // 打印数字
current = 1; // 设置为线程1的执行时机
lock.notifyAll(); // 唤醒其他线程
}
}
});
// 启动三个线程
t1.start();
t2.start();
t3.start();
}
}
0-1背包
public class Main {
// 0-1背包问题的解决方法
public static int bagValue(int[] weights, int[] values, int capacity) {
int n = weights.length;
// 创建一个二维数组dp,其中dp[i][j]表示前i件物品在总容量为j的条件下的最大价值
int[][] dp = new int[n + 1][capacity + 1];
// 遍历每一个物品
for (int i = 1; i <= n; i++) {
// 遍历每一个可能的容量值
for (int j = 1; j <= capacity; j++) {
// 如果当前物品的重量大于当前的背包容量,那么当前物品不能放入背包
if (weights[i - 1] > j) {
dp[i][j] = dp[i - 1][j];
} else {
// 当前物品可以放入背包,我们选择放入或不放入的最大值
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i - 1]);
}
}
}
// 返回最大值,即dp[n][capacity]
return dp[n][capacity];
}
public static void main(String[] args) {
int[] weights = {2, 3, 4, 5}; // 每个物品的重量
int[] values = {3, 4, 5, 6}; // 每个物品的价值
int capacity = 5; // 背包的容量
int maxValue = bagValue(weights, values, capacity);
System.out.println("背包可以获得的最大价值是: " + maxValue);
}
}
LRU缓存
public class LRUCache {
//函数 get 和 put 必须以 O(1) 的平均时间复杂度运行所以必须用双向链表
private class Node {
int key, val;
Node pre, next;
Node(int key, int val) {
this.key = key;
this.val = val;
}
}
//初始化容量
private final int capacity;
Node dummy = new Node(0, 0);
Map<Integer, Node> keyNode = new HashMap<>();
public LRUCache(int capacity) {
this.capacity = capacity;
dummy.pre = dummy;
dummy.next = dummy;
}
public int get(int key) {
Node node = getNode(key);
return node == null ? -1 : node.val;
}
public void put(int key, int value) {
//有就更新,没有就插入
Node node = getNode(key);
if (node != null) {
node.val = value;
return;
}
node = new Node(key, value);//新增
keyNode.put(key, node);
pushFront(node);//放在最前面
if (keyNode.size() > capacity) {
//容量过大就删除,此处为双向循环链表,dummy.pre可以找到尾节点的数
Node pre = dummy.pre;
keyNode.remove(pre.key);
remove(pre);
}
}
private Node getNode(int key) {
if (!keyNode.containsKey(key)) {
return null;
}
Node node = keyNode.get(key);
remove(node);//先删除
pushFront(node);//再更新
return node;
}
private void pushFront(Node node) {
node.pre = dummy;
node.next = dummy.next;
node.pre.next = node;
node.next.pre = node;
}
private void remove(Node node) {
node.pre.next = node.next;
node.next.pre = node.pre;
}
}
leetcode 49 字母异位词组合
public static List<List<String>> groupAnagrams(String[] strs) {
HashMap<String, List<String>> map = new HashMap<>();
for(String str : strs){
char[] charArray = str.toCharArray();
Arrays.sort(charArray);
String key = charArray.toString();
List<String> list = map.getOrDefault(key, new ArrayList<>());
list.add(str);
map.put(key,list);
}
return new ArrayList<>(map.values());
}
leetcode 128 最长连续序列
通过hash表可以O(1)的复杂度来判断元素是否存在
public int longestConsecutive(int[] nums) {
if (nums == null || nums.length == 0){
return 0;
}
Set<Integer> set = new HashSet<>();
for (int x : nums){
set.add(x);
}
int res = 0;
for(int x : set){
if (set.contains(x-1)){
continue;//存在更长的虚列
}
// 此时x是一个序列的起点
int y = x + 1;
while(set.contains(y)){
y++;// 一直查询下一个数是否存在哈希表中
}
res = Math.max(res,y-x); // 从 x 到 y-1 一共 y-x 个数
}
return res;
}
leetcode 283 移动零
public void moveZeroes(int[] nums) {
int index = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] != 0) {
nums[index] = nums[i];
index++;
}
}
for (int i = index; i < nums.length; i++) {
nums[i] = 0;
}
}
leetcode 11 盛最多水的容器
public int maxArea(int[] height) {
int i = 0,j = height.length - 1;
int res = 0 ;
while(i < j){
res = Math.max((j-i) * Math.min(height[j],height[i]),res);
if(height[i] <= height[j]){
i++;
}else{
j--;
}
}
return res;
}
leetcode 15 三数之和
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
if (nums.length < 3){
return res;
}
Arrays.sort(nums);
for (int i = 0; i < nums.length; i++) {
if (nums[i] > 0){
break;
}
if (i > 0 && nums[i] == nums[i-1]){
continue; // 去除重复三元组
}
int l = i+1;
int r = nums.length-1;
while(l<r){
int sum = nums[i]+nums[l]+nums[r];
if (sum == 0){
res.add(Arrays.asList(nums[i],nums[l],nums[r]));
while(l<r && nums[l] == nums[l+1]){
l++; // 重复情况
}
while(l<r && nums[r] == nums[r-1]){
r--;// 重复情况
}
l++;
r--;
} else if (sum < 0) {
l++;
}else{
r--;
}
}
}
return res;
}
leetcode 3 无重复字符串的最长字串
public int lengthOfLongestSubstring(String s) {
if (s.length() == 0 || s == null){
return 0;
}
int res = 0;
int i = 0,j = 0;
Set<Character> set = new HashSet<>();
while(j<s.length()){
while (set.contains(s.charAt(j))){
set.remove(s.charAt(i));
i++;
}
set.add(s.charAt(j));
j++;
res = Math.max(res,j-i);
}
return res;
}
leetcode 438 找到字符中所有字母的异位词
给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。
public List<Integer> findAnagrams(String s, String p) {
List<Integer> list = new ArrayList<>();
int[] arr1 = new int[26];
int[] arr2 = new int[26];
for (int i = 0; i < p.length(); i++) {
arr2[p.charAt(i)-'a']++;
}
for (int r = 0; r < s.length(); r++) {
arr1[s.charAt(r)-'a']++;// 字符串右边的字母进入窗口
int l = r - p.length() + 1;
if (l < 0){
continue;
}
if (Arrays.equals(arr1,arr2)){
list.add(l);
}
arr1[s.charAt(l)-'a']--;// 左边的字母离开窗口
}
return list;
}
leetcode 560 和为k的子数组个数
前缀和优化
public int subarraySum(int[] nums, int k) {
int len = nums.length;
// 计算前缀和
int[] preSum = new int[len + 1];
preSum[0] = 0;
for (int i = 0; i < len; i++) {
preSum[i+1] = preSum[i] + nums[i];
}
int count = 0;
for (int left = 0; left < len; left++) {
for (int right = 0; right < len; right++) {
if (preSum[right+1] - preSum[left] == k){
count++;
}
}
}
return count;
}
leetcode 239 滑动窗口最大值
public int[] maxSlidingWindow(int[] nums, int k) {
int n = nums.length;
int[] ans = new int[n-k+1];
Deque<Integer> deque = new LinkedList<>();
for (int i = 0; i < n; i++) {
// 1入队列
while(!deque.isEmpty() && nums[deque.getLast()] <= nums[i]){
deque.removeLast();
}
deque.addLast(i);
// 2出队列
if (i - deque.getFirst() >= k){
deque.removeFirst();
}
// 3算答案
if (i >= k-1){
// 单调递减,所以窗口最大值为对首
ans[i-k+1] = nums[deque.getFirst()];
}
}
return ans;
}
leetcoe 189 轮转数组
public void rotate(int[] nums, int k) {
int len = nums.length;
reverse(nums,0,len - 1);
reverse(nums,0,k-1);
reverse(nums,k,len-1);
}
private void reverse(int[] nums,int left,int right){
while (left < right){
int t = nums[left];
nums[left++] = nums[right];
nums[right--] = t;
}
}
比较版本号
class Solution {
public int compareVersion(String v1, String v2) {
String[] ss1 = v1.split("\\."), ss2 = v2.split("\\.");
int n = ss1.length, m = ss2.length;
int i = 0, j = 0;
while (i < n || j < m) {
int a = 0, b = 0;
if (i < n) a = Integer.parseInt(ss1[i++]);
if (j < m) b = Integer.parseInt(ss2[j++]);
if (a != b) return a > b ? 1 : -1;
}
return 0;
}
}
有效括号匹配
class Solution {
public boolean isValid(String s) {
if(s==null||s.length()==0){
return true;
}
Stack<Character> stack = new Stack<>();
for (int i = 0; i < s.length(); i++) {
//获取每个元素
char c = s.charAt(i);
//左括号就入栈
if (c == '(' || c == '[' || c == '{') {
stack.push(c);
} else {
if(stack.isEmpty()){
return false;
}
char top = stack.pop();
if ((c == ')' && top == '(') || (c == ']' && top == '[') || (c == '}' && top == '{')) {
continue;
} else {
return false;
}
}
}
return stack.isEmpty();
}
}
螺旋矩阵
private static final int[][] DIRS = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 右下左上
public static List<Integer> spiralOrder(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
List<Integer> ans = new ArrayList<>(m * n); // 预分配空间
int i = 0;
int j = 0;
int di = 0;
for (int k = 0; k < m * n; k++) { // 一共走 mn 步
ans.add(matrix[i][j]);
matrix[i][j] = Integer.MAX_VALUE; // 标记,表示已经访问过(已经加入答案)
int x = i + DIRS[di][0];
int y = j + DIRS[di][1]; // 下一步的位置
// 如果 (x, y) 出界或者已经访问过
if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] == Integer.MAX_VALUE) {
di = (di + 1) % 4; // 右转 90°
}
i += DIRS[di][0];
j += DIRS[di][1]; // 走一步
}
return ans;
}
接雨水
public int trap(int[] height) {
int ans = 0;
int left = 0;
int right = height.length - 1;
int preMax = 0; // 前缀最大值,随着左指针 left 的移动而更新
int sufMax = 0; // 后缀最大值,随着右指针 right 的移动而更新
while (left < right) {
preMax = Math.max(preMax, height[left]);
sufMax = Math.max(sufMax, height[right]);
ans += preMax < sufMax ? preMax - height[left++] : sufMax - height[right--];
}
return ans;
}
死锁程序
public class SimpleDeadlockExample {
// Two resources for demonstration
private static final Object resource1 = new Object();
private static final Object resource2 = new Object();
public static void main(String[] args) {
// Thread 1 tries to lock resource1 then resource2
Thread thread1 = new Thread(() -> {
synchronized (resource1) {
System.out.println("Thread 1: locked resource 1");
try {
// Simulate some work with resource1
Thread.sleep(100);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
System.out.println("Thread 1: waiting for resource 2");
synchronized (resource2) {
System.out.println("Thread 1: locked resource 2");
}
}
});
// Thread 2 tries to lock resource2 then resource1
Thread thread2 = new Thread(() -> {
synchronized (resource2) {
System.out.println("Thread 2: locked resource 2");
try {
// Simulate some work with resource2
Thread.sleep(100);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
System.out.println("Thread 2: waiting for resource 1");
synchronized (resource1) {
System.out.println("Thread 2: locked resource 1");
}
}
});
thread1.start();
thread2.start();
}
}