leetcode144 二叉树的前序遍历
递归版本
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
preorder(root, res);
return res;
}
public void preorder(TreeNode root, List<Integer> res) {
if (root == null) {
return;
}
res.add(root.val);
preorder(root.left, res);
preorder(root.right, res);
}
非递归版本:利用栈模拟
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
//利用栈模拟非递归遍历
Stack<TreeNode> stack = new Stack<>();
if (root == null) {
return res;
}
stack.push(root);
while (!stack.isEmpty()) {
TreeNode pop = stack.pop();
res.add(pop.val);
if (pop.right != null) {
stack.push(pop.right);
}
if (pop.left != null) {
stack.push(pop.left);
}
}
return res;
}
leetcode94 二叉树的中序遍历
List<Integer> list = new ArrayList<>();
public List<Integer> inorderTraversal(TreeNode root) {
mid(root);
return list;
}
private void mid(TreeNode root) {
if (root == null) return;
mid(root.left);
list.add(root.val);
mid(root.right);
}
非递归版本
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) {
return result;
}
Stack<TreeNode> stack = new Stack<>();
TreeNode cur = root;
while (cur != null || !stack.isEmpty()) {
if (cur != null) {
stack.push(cur);
cur = cur.left;
} else {
cur = stack.pop();
result.add(cur.val);
cur = cur.right;
}
}
return result;
}
leetcode145 二叉树的后序遍历
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList();
if (root == null) {
return list;
}
postorder(root, list);
return list;
}
private void postorder(TreeNode root, List<Integer> list) {
if (root == null) {
return;
}
postorder(root.left, list);
postorder(root.right, list);
list.add(root.val);
}
非递归版本
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if (root == null) {
return res;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode node = stack.pop();
res.add(node.val);
if (node.left != null) {
stack.push(node.left);
}
if (node.right != null) {
stack.push(node.right);
}
}
Collections.reverse(res);
return res;
}
leetcode102 二叉树的层序遍历
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
Queue<TreeNode> queue = new LinkedList<>();
if (root == null) {
return res;
}
queue.add(root);
while (!queue.isEmpty()) {
int size = queue.size();
List<Integer> temp = new ArrayList<>();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
temp.add(node.val);
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
res.add(temp);
}
return res;
}
leetcode199 二叉树的右视图
在层序遍历中只加入该层的最后一个节点
public List<Integer> rightSideView(TreeNode root) {
List<Integer> res = new ArrayList<>();
Queue<TreeNode> queue = new LinkedList<>();
if (root == null) {
return res;
}
queue.add(root);
while (!queue.isEmpty()) {
int size = queue.size();
for (int i = 0; i < size; i++) {
TreeNode poll = queue.poll();
if (poll.left != null) {
queue.add(poll.left);
}
if (poll.right != null) {
queue.add(poll.right);
}
if (i == size - 1) {
res.add(poll.val);
}
}
}
return res;
}
leetcode637 二叉树层的平均值
public List<Double> averageOfLevels(TreeNode root) {
List<Double> res = new ArrayList<>();
Queue<TreeNode> queue = new LinkedList<>();
if (root == null) {
return res;
}
queue.add(root);
while (!queue.isEmpty()) {
double temp = 0;
int size = queue.size();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
temp += node.val;
if (node.left != null) {
queue.add(node.left);
}
if (node.right != null) {
queue.add(node.right);
}
}
temp = temp / size;
res.add(temp);
}
return res;
}
leetcode429 N叉树的层序遍历
public List<List<Integer>> levelOrder(Node root) {
List<List<Integer>> res = new ArrayList<>();
Queue<Node> queue = new LinkedList<>();
if (root == null) {
return res;
}
queue.add(root);
while (!queue.isEmpty()) {
int size = queue.size();
List<Integer> temp = new ArrayList<>();
for (int i = 0; i < size; i++) {
Node poll = queue.poll();
temp.add(poll.val);
List<Node> children = poll.children;
for (int j = 0; j < children.size(); j++) {
if (children.get(j) != null) {
queue.add(children.get(j));
}
}
}
res.add(temp);
}
return res;
}
leetcode515 在每个树行中的最大值
public List<Integer> largestValues(TreeNode root) {
List<Integer> res = new ArrayList<>();
if (root == null) {
return res;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty()) {
int size = queue.size();
int temp = Integer.MIN_VALUE;
for (int i = 0; i < size; i++) {
TreeNode poll = queue.poll();
temp = Math.max(temp, poll.val);
if (poll.left != null) {
queue.add(poll.left);
}
if (poll.right != null) {
queue.add(poll.right);
}
}
res.add(temp);
}
return res;
}
leetcode116 填充每个节点的右侧指针
public Node connect(Node root) {
Queue<Node> queue = new LinkedList<>();
if (root == null) {
return null;
}
queue.add(root);
while (!queue.isEmpty()) {
int size = queue.size();
Node poll = queue.poll();
if (poll.left != null) {
queue.add(poll.left);
}
if (poll.right != null) {
queue.add(poll.right);
}
for (int i = 1; i < size; i++) {
Node cur = queue.poll();
if (cur.left != null) {
queue.add(cur.left);
}
if (cur.right != null) {
queue.add(cur.right);
}
poll.next = cur;
poll = cur;
}
}
return root;
}
leetcode104 二叉树的最大深度
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
int left = maxDepth(root.left);
int right = maxDepth(root.right);
return Math.max(left, right) + 1;
}
leetcode226 翻转二叉树
public TreeNode invertTree(TreeNode root) {
if (root == null) {
return root;
}
TreeNode t = root.left;
root.left = root.right;
root.right = t;
invertTree(root.left);
invertTree(root.right);
return root;
}
leetcode101 对称二叉树
public boolean isSymmetric(TreeNode root) {
if (root == null) {
return true;
}
return check(root.left, root.right);
}
public boolean check(TreeNode left, TreeNode right) {
if (left == null && right != null) {
return false;
} else if (left != null && right == null) {
return false;
} else if (left == null && right == null) {
return true;
} else if (left.val != right.val) {
return false;
}
//比较外侧节点
boolean bool1 = check(left.left, right.right);
//比较内侧节点
boolean bool2 = check(left.right, right.left);
return bool1 && bool2;
}
leetcode105 前序和中序构建二叉树
class Solution {
Map<Integer, Integer> map = new HashMap<>();
public TreeNode buildTree(int[] preorder, int[] inorder) {
for (int i = 0; i < preorder.length; i++) {
map.put(inorder[i], i);
}
return find(preorder, 0, preorder.length, inorder, 0, inorder.length);
}
private TreeNode find(int[] preorder, int preStart, int preEnd, int[] inorder, int inStart, int inEnd) {
if (preStart >= preEnd || inStart >= inEnd) {
return null;
}
//构建根节点
int rootIndex = map.get(preorder[preStart]);
TreeNode root = new TreeNode(inorder[rootIndex]);
int len = rootIndex - inStart;//保存中序遍历中左子树的个数;
//切分前序数组
root.left = find(preorder, preStart + 1, preStart + len + 1, inorder, inStart, inEnd);
root.right = find(preorder, preStart + len + 1, preEnd, inorder, rootIndex + 1, inEnd);
return root;
}
}
leetcode106 中序和后序构建二叉树
class Solution {
Map<Integer,Integer> map ;
public TreeNode buildTree(int[] inorder, int[] postorder) {
map = new HashMap<>();
for (int i = 0; i < inorder.length; i++) {
map.put(inorder[i],i);//map用来存储元素的位置
}
return createNode(inorder,0, inorder.length, postorder,0, postorder.length);
}
public TreeNode createNode(int[] inorder,int inBegin,int inEnd,int[] postorder,
int postBegin,int postEnd){
if (inBegin >= inEnd || postBegin >= postEnd){
return null;
}
int rootIndex = map.get(postorder[postEnd - 1]);//根节点位置
TreeNode root = new TreeNode(inorder[rootIndex]);//获取根节点在中序中的位置
int left = rootIndex - inBegin;//保存左子树的个数,可以计算出右子树的个数
root.left = createNode(inorder,inBegin,rootIndex,
postorder,postBegin,postBegin+left);
root.right = createNode(inorder,rootIndex+1,inEnd,
postorder,postBegin+left,postEnd-1);
return root;
}
}
leetcode108 将有序数组转化为二叉搜索树
二分搜索的思路
public TreeNode sortedArrayToBST(int[] nums) {
if (nums == null || nums.length == 0){
return null;
}
return set(nums,0, nums.length-1);
}
private TreeNode set(int[] nums,int left,int right){
if (left > right){
return null;
}
int index=(left+right)>>>1;
TreeNode root = new TreeNode(nums[index]);
root.left = set(nums,left,index - 1);
root.right = set(nums,index+1,right);
return root;
}
leetcode 98验证二叉搜索树
中序遍历+判断
public boolean isValidBST(TreeNode root) {
List<Integer> list = new ArrayList<>();
mid(root,list);
for (int i = 1; i < list.size(); i++) {
if (list.get(i)<list.get(i-1)){
return false;
}
}
return true;
}
private void mid(TreeNode root,List<Integer> list) {
if (root == null){
return;
}
mid(root.left,list);
list.add(root.val);
mid(root.right,list);
}
leetcode114 二叉树展开为链表
class Solution {
public void flatten(TreeNode root) {
//思路:将根节点的左子树挂接到右子树上,将原先的右子树挂接到新的右子树的后面
while (root != null) {
if (root.left == null) {
root = root.right;
} else {
TreeNode pre = root.left;
while (pre.right != null) {
pre = pre.right;//找到左子树最右边的结点
}
pre.right = root.right;//将原先右子树挂接
root.right = root.left;
root.left = null;
root = root.right;
}
}
}
}
leetcode 112 路径总和
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
public boolean hasPathSum(TreeNode root, int targetSum) {
if (root == null){
return false;
}
//回溯过程
targetSum -= root.val;
if (root.left == null && root.right == null){
return targetSum == 0;
}
if (root.left!=null){
boolean left = hasPathSum(root.left,targetSum);
if (left){
return true;
}
}
if (root.right != null){
boolean right = hasPathSum(root.right,targetSum);
if (right){
return true;
}
}
return false;
}
leetcode 437 路径总和三
给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum 的 路径 的数目。路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点到子节点)。
思路:dfs+递归
int count = 0;
public int pathSum(TreeNode root, int targetSum) {
if (root == null){
return 0;
}
dfs(root,targetSum);
pathSum(root.left,targetSum);
pathSum(root.right,targetSum);
return count;
}
private void dfs(TreeNode root, int targetSum) {
if (root == null){
return;
}
if (root.val == targetSum){
count++;
}
dfs(root.left,targetSum-root.val);
dfs(root.right,targetSum-root.val);
}
leetcode 236 二叉树的最近公共祖先
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || root == p || root == q){
return root;
}
TreeNode left = lowestCommonAncestor(root.left,p,q);
TreeNode right = lowestCommonAncestor(root.right,p,q);
if (left == null && right != null) {
return right;
} else if (left != null && right == null) {
return left;
} else if (left == null && right == null) {
return null;
}else {
return root;
}
}
leetcode 124 二叉树的最大路径和
int ans = Integer.MIN_VALUE;
public int maxPathSum(TreeNode root) {
dfs(root);
return ans;
}
int dfs(TreeNode root){
// 计算以当前节点为最高点的时候的最大路径和
if(root == null){
return 0;
}
int left = dfs(root.left);
int right = dfs(root.right);
int t = root.val;
if(left > 0){
t += left;
}
if(right > 0){
t += right;
}
ans = Math.max(ans,t);
return Math.max(root.val , Math.max(left,right) + root.val);
}
leetcode 257 二叉树的所有路径
public List<String> binaryTreePaths(TreeNode root) {
List<String> res = new ArrayList<>();
if (root == null ){
return res;
}
dfs1(root,res,"");
return res;
}
private void dfs1(TreeNode root, List<String> res, String s) {
if (root == null){
return;
}
s += root.val;
if (root.left == root.right){
res.add(s);
return;
}
s+="->";
dfs1(root.left,res,s);
dfs1(root.right,res,s);
}