算法设计思路
(1)初始化。令 low = 0;指向有序S【】第一个元素;
high = n - 1,指向有序数组S【】的最后一个元素。
(2) low<=high是否成立
(3)middle = (low+high)/2;
(4)x与S[middle]的关系
若x>S[midldle],则low = middle +1;
否则令 high = middle - 1;
转向2
算法实现
(1)非递归算法
int BinarySearch(int s【】,int n,int x)
{
int low = 0,high = n-1;
while(low<=high)
{
int middle = (low + high) /2 ;
if(x == s[middle])
return middle;
else if(x>s[middle])
low = middle +1;
else
high = middle - 1;
}
return -1;
}
(2) 递归算法
int recursionBS( int s[],int x,int low,int high)
{
if(low > high)
return -1;
int middle = (low + high) / 2;
if(x == s[middle])
return middle;
else if(x<s[middle])
return recursionBS(s,x,middle+1,high);
}
模板
bool check(int x) {/* ... */} // 检查x是否满足某种性质
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid; // check()判断mid是否满足性质
else l = mid + 1;
}
return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}