tqdm
库在深度学习中可以显示训练过程的进度条。
for epoch in range(epochs):
...
train_bar = tqdm(train_loader, file=sys.stdout)
for step, data in enumerate(train_bar):
...
train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
epochs,
loss)
net.eval()
acc = 0.0
with torch.no_grad():
val_bar = tqdm(validate_loader, file=sys.stdout)
for val_data in val_bar:
...
val_accurate = acc / val_num
print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
(epoch + 1, running_loss / train_steps, val_accurate))
基本用法
from tqdm import tqdm
import time
for i in tqdm(range(100), desc="Processing"):
time.sleep(0.1)
desc="Processing"
:设置进度条的描述。
自定义进度条
for i in tqdm(range(100), desc="Custom Progress", unit="item", ncols=80, colour="green"):
time.sleep(0.05)
unit="item"
:自定义单位。ncols=80
:设置进度条的宽度。colour="green"
:改变进度条的颜色。