思路:
设置一个列表,对应标签位置的值置为1,其他位置的值置为0
TextCNN最后一层需要加上一个sigmoid层,把值锁定在0-1之间
损失函数采用二元交叉熵损失函数
一般采用macro平均这一衡量指标
然后就是数据处理的时候需要变化,最主要的就是标签形式有所改变已经不是一个单一的标量了
代码实现如下:
models/TextCNN.py
# models/TextCNN.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class Config(object):
"""配置参数"""
def __init__(self, dataset, embedding):
self.model_name = 'TextCNN'
self.train_path = dataset + '/data/train.txt' # 训练集
self.dev_path = dataset + '/data/dev.txt' # 验证集
self.test_path = dataset + '/data/test.txt' # 测试集
self.class_list = ["动力", "价格", "内饰", "配置", "安全性", "外观", "操控", "油耗", "空间", "舒适性"] # 类别名单
self.vocab_path = dataset + '/data/vocab.pkl' # 词表
self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt' # 模型训练结果
self.log_path = dataset + '/log/' + self.model_name
self.embedding_pretrained = torch.tensor(
np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\
if embedding != 'random' else None # 预训练词向量
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
self.dropout = 0.5 # 随机失活
self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练
self.num_classes = len(self.class_list) # 类别数
self.n_vocab = 0 # 词表大小,在运行时赋值
self.num_epochs = 20 # epoch数
self.batch_size = 8 # mini-batch大小
self.pad_size = 32 # 每句话处理成的长度(短填长切)
self.learning_rate = 0.5*1e-3 # 学习率
self.embed = self.embedding_pretrained.size(1)\
if self.embedding_pretrained is not None else 300 # 字向量维度
self.filter_sizes = (2, 3, 4) # 卷积核尺寸
self.num_filters = 256 # 卷积核数量(channels数)
class Model(nn.Module):
def __init__(self, config):
super(Model, self).__init__()
if config.embedding_pretrained is not None:
self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
else:
self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
self.convs = nn.ModuleList(
[nn.Conv2d(1, config.num_filters, (k, config.embed)) for k in config.filter_sizes])
self.dropout = nn.Dropout(config.dropout)
self.fc = nn.Linear(config.num_filters * len(config.filter_sizes), config.num_classes)
def conv_and_pool(self, x, conv):
x = F.relu(conv(x)).squeeze(3)
x = F.max_pool1d(x, x.size(2)).squeeze(2)
return x
def forward(self, x):
out = self.embedding(x[0])
out = out.unsqueeze(1)
out = torch.cat([self.conv_and_pool(out, conv) for conv in self.convs], 1)
out = self.dropout(out)
out = self.fc(out)
out = torch.sigmoid(out) # 使用sigmoid激活函数用于多标签分类
return out
utils.py
# utils.py
import os
import torch
import numpy as np
import pickle as pkl
from tqdm import tqdm
import time
from datetime import timedelta
MAX_VOCAB_SIZE = 10000 # 词表长度限制
UNK, PAD = '<UNK>', '<PAD>'
def build_vocab(file_path, tokenizer, max_size, min_freq):
vocab_dic = {}
with open(file_path, 'r', encoding='UTF-8') as f:
for line in tqdm(f):
lin = line.strip()
if not lin:
continue
content = lin.split('\t')[0]
for word in tokenizer(content):
vocab_dic[word] = vocab_dic.get(word, 0) + 1
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[:max_size]
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
return vocab_dic
def build_dataset(config, ues_word):
if ues_word:
tokenizer = lambda x: x.split(' ')
else:
tokenizer = lambda x: [y for y in x]
def load_dataset(path, pad_size=32):
contents = []
with open(path, 'r', encoding='UTF-8') as f:
for line in tqdm(f):
lin = line.strip()
if not lin:
continue
parts = lin.split('\t')
content = parts[0]
labels = parts[1:]
words_line = []
token = tokenizer(content)
seq_len = len(token)
if pad_size:
if len(token) < pad_size:
token.extend([PAD] * (pad_size - len(token)))
else:
token = token[:pad_size]
seq_len = pad_size
for word in token:
words_line.append(vocab.get(word, vocab.get(UNK)))
label_vector = [0] * len(config.class_list)
for label in labels:
label_name = label.split('#')[0] # 提取标签名称
label_index = config.class_list.index(label_name) # 查找标签索引
label_vector[label_index] = 1
contents.append((words_line, label_vector, seq_len))
return contents
if os.path.exists(config.vocab_path):
vocab = pkl.load(open(config.vocab_path, 'rb'))
else:
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
pkl.dump(vocab, open(config.vocab_path, 'wb'))
print(f"Vocab size: {len(vocab)}")
train = load_dataset(config.train_path, config.pad_size)
dev = load_dataset(config.dev_path, config.pad_size)
test = load_dataset(config.test_path, config.pad_size)
return vocab, train, dev, test
class DatasetIterater(object):
def __init__(self, batches, batch_size, device):
self.batch_size = batch_size
self.batches = batches
self.n_batches = len(batches) // batch_size
self.residue = False
if len(batches) % self.n_batches != 0:
self.residue = True
self.index = 0
self.device = device
def _to_tensor(self, datas):
x = torch.LongTensor([_[0] for _ in datas]).to(self.device)
y = torch.FloatTensor([_[1] for _ in datas]).to(self.device)
seq_len = torch.LongTensor([_[2] for _ in datas]).to(self.device)
return (x, seq_len), y
def __next__(self):
if self.residue and self.index == self.n_batches:
batches = self.batches[self.index * self.batch_size: len(self.batches)]
self.index += 1
batches = self._to_tensor(batches)
return batches
elif self.index >= self.n_batches:
self.index = 0
raise StopIteration
else:
batches = self.batches[self.index * self.batch_size: (self.index + 1) * self.batch_size]
self.index += 1
batches = self._to_tensor(batches)
return batches
def __iter__(self):
return self
def __len__(self):
if self.residue:
return self.n_batches + 1
else:
return self.n_batches
def build_iterator(dataset, config):
iter = DatasetIterater(dataset, config.batch_size, config.device)
return iter
def get_time_dif(start_time):
end_time = time.time()
time_dif = end_time - start_time
return timedelta(seconds=int(round(time_dif)))
if __name__ == "__main__":
'''提取预训练词向量'''
train_dir = "./CarData/data/train.txt"
vocab_dir = "./CarData/data/vocab.pkl"
pretrain_dir = "./CarData/data/sgns.sogou.char"
emb_dim = 300
filename_trimmed_dir = "./CarData/data/embedding_CarData.npz"
if os.path.exists(vocab_dir):
word_to_id = pkl.load(open(vocab_dir, 'rb'))
else:
tokenizer = lambda x: x.split(' ')
word_to_id = build_vocab(train_dir, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
pkl.dump(word_to_id, open(vocab_dir, 'wb'))
embeddings = np.random.rand(len(word_to_id), emb_dim)
with open(pretrain_dir, "r", encoding='UTF-8') as f:
for i, line in enumerate(f.readlines()):
if i == 0: # 若第一行是标题,则跳过
continue
lin = line.strip().split(" ")
if lin[0] in word_to_id:
idx = word_to_id[lin[0]]
emb = [float(x) for x in lin[1:301]]
embeddings[idx] = np.asarray(emb, dtype='float32')
np.savez_compressed(filename_trimmed_dir, embeddings=embeddings)
train_eval.py
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn import metrics
import time
from utils import get_time_dif
from tensorboardX import SummaryWriter
def init_network(model, method='xavier', exclude='embedding', seed=123):
for name, w in model.named_parameters():
if exclude not in name:
if 'weight' in name:
if method == 'xavier':
nn.init.xavier_normal_(w)
elif method == 'kaiming':
nn.init.kaiming_normal_(w)
else:
nn.init.normal_(w)
elif 'bias' in name:
nn.init.constant_(w, 0)
def train(config, model, train_iter, dev_iter, test_iter):
start_time = time.time()
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
total_batch = 0
dev_best_loss = float('inf')
last_improve = 0
flag = False
writer = SummaryWriter(log_dir=config.log_path + '/' + time.strftime('%m-%d_%H.%M', time.localtime()))
criterion = nn.BCELoss()
for epoch in range(config.num_epochs):
print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
for i, (trains, labels) in enumerate(train_iter):
outputs = model(trains)
model.zero_grad()
loss = criterion(outputs, labels.float())
loss.backward()
optimizer.step()
if total_batch % 100 == 0:
true = labels.data.cpu().numpy()
predic = torch.round(outputs).detach().cpu().numpy()
# 计算训练集的宏平均准确率
per_label_acc = []
for j in range(config.num_classes):
per_label_acc.append(metrics.accuracy_score(true[:, j], predic[:, j]))
train_acc = np.mean(per_label_acc)
dev_acc, dev_loss = evaluate(config, model, dev_iter)
if dev_loss < dev_best_loss:
dev_best_loss = dev_loss
torch.save(model.state_dict(), config.save_path)
improve = '*'
last_improve = total_batch
else:
improve = ''
time_dif = get_time_dif(start_time)
msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}'
print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve))
writer.add_scalar("loss/train", loss.item(), total_batch)
writer.add_scalar("loss/dev", dev_loss, total_batch)
writer.add_scalar("acc/train", train_acc, total_batch)
writer.add_scalar("acc/dev", dev_acc, total_batch)
model.train()
total_batch += 1
if total_batch - last_improve > config.require_improvement:
print("No optimization for a long time, auto-stopping...")
flag = True
break
if flag:
break
writer.close()
test(config, model, test_iter)
def evaluate(config, model, data_iter, test=False):
model.eval()
loss_total = 0
predict_all = np.array([], dtype=int).reshape(0, config.num_classes)
labels_all = np.array([], dtype=int).reshape(0, config.num_classes)
criterion = nn.BCELoss()
with torch.no_grad():
for texts, labels in data_iter:
outputs = model(texts)
loss = criterion(outputs, labels.float())
loss_total += loss
labels = labels.data.cpu().numpy()
predic = torch.round(outputs).detach().cpu().numpy()
labels_all = np.concatenate((labels_all, labels), axis=0)
predict_all = np.concatenate((predict_all, predic), axis=0)
# 计算宏平均准确率
per_label_acc = []
for i in range(config.num_classes):
per_label_acc.append(metrics.accuracy_score(labels_all[:, i], predict_all[:, i]))
acc = np.mean(per_label_acc)
if test:
precision = metrics.precision_score(labels_all, predict_all, average='macro')
recall = metrics.recall_score(labels_all, predict_all, average='macro')
f1 = metrics.f1_score(labels_all, predict_all, average='macro')
report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=4)
confusion = metrics.multilabel_confusion_matrix(labels_all, predict_all)
return acc, loss_total / len(data_iter), report, confusion, precision, recall, f1
return acc, loss_total / len(data_iter)
def test(config, model, test_iter):
model.load_state_dict(torch.load(config.save_path))
model.eval()
start_time = time.time()
test_acc, test_loss, test_report, test_confusion, precision, recall, f1 = evaluate(config, model, test_iter, test=True)
msg = 'Test Loss: {0:>5.2}, Test Acc: {1:>6.2%}'
print(msg.format(test_loss, test_acc))
print("Precision, Recall and F1-Score...")
print(test_report)
print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-Score: {f1:.4f}")
print("Confusion Matrix...")
print(test_confusion)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
run.py
# run.py
import time
import torch
import numpy as np
from train_eval import train, init_network
from importlib import import_module
import argparse
parser = argparse.ArgumentParser(description='Chinese-Multi-label-Text-Classification')
parser.add_argument('--model', type=str, required=True, help='choose a model: TextCNN, TextRNN, FastText, TextRCNN, TextRNN_Att, DPCNN, Transformer')
parser.add_argument('--embedding', default='pre_trained', type=str, help='random or pre_trained')
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
args = parser.parse_args()
if __name__ == '__main__':
dataset = 'CarData' # 替换为新数据集的名称
embedding = 'embedding_CarData.npz'
if args.embedding == 'random':
embedding = 'random'
model_name = args.model
from utils import build_dataset, build_iterator, get_time_dif
x = import_module('models.' + model_name)
config = x.Config(dataset, embedding)
np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True
start_time = time.time()
print("Loading data...")
vocab, train_data, dev_data, test_data = build_dataset(config, True)
train_iter = build_iterator(train_data, config)
dev_iter = build_iterator(dev_data, config)
test_iter = build_iterator(test_data, config)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
config.n_vocab = len(vocab)
model = x.Model(config).to(config.device)
if model_name != 'Transformer':
init_network(model)
print(model.parameters)
train(config, model, train_iter, dev_iter, test_iter)
2441





