Map 端的主要工作:为来自不同表或文件的 key/value 对, 打标签以区别不同来源的记 录 。然后 用连接字段作为 key ,其余部分和新加的标志作为 value ,最后进行输出。Reduce 端的主要工作:在 Reduce 端 以连接字段作为 key 的分组已经完成 ,我们只需要 在每一个分组当中将那些来源于不同文件的记录(在 Map 阶段已经打标志)分开,最后进行合并就 ok 了。
(1)需求
两个文件的形式和内容
最终输出结果:
(2)需求分析
通过将关联条件作为
Map
输出的
key
,将两表满足
Join
条件的数据并携带数据所来源的文件信息,发往同一个 ReduceTask
,在
Reduce
中进行数据的串联。
(3)代码实现
使用maven工程进行实现
pom.xml配置文件(添加依赖和打包插件)
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.hadoop</groupId>
<artifactId>MapReduceDemo</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.30</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
(1)编写TableBean类
package com.hadoop.mapreduce.reduceJoin;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
/**
* @author codestart
* @create 2023-06-21 10:41
*/
public class TableBean implements Writable {
//id pid amount pname需要创建的字段
private String id; //订单id
private String pid; //商品id
private int amount; //商品价格
private String pname; //商品名称
private String flag; //标记为哪个表
public TableBean() {
}
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public String getPid() {
return pid;
}
public void setPid(String pid) {
this.pid = pid;
}
public int getAmount() {
return amount;
}
public void setAmount(int amount) {
this.amount = amount;
}
public String getPname() {
return pname;
}
public void setPname(String pname) {
this.pname = pname;
}
public String getFlag() {
return flag;
}
public void setFlag(String flag) {
this.flag = flag;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(id);
out.writeUTF(pid);
out.writeInt(amount);
out.writeUTF(pname);
out.writeUTF(flag);
}
@Override
public void readFields(DataInput in) throws IOException {
this.id = in.readUTF();
this.pid = in.readUTF();
this.amount = in.readInt();
this.pname = in.readUTF();
this.flag = in.readUTF();
}
@Override
public String toString() {
return id + '\t' + pname + '\t' + amount;
}
}
(2)编写Mapper类
package com.hadoop.mapreduce.reduceJoin;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.File;
import java.io.IOException;
/**
* @author codestart
* @create 2023-06-21 10:56
*/
public class TableMapper extends Mapper<LongWritable, Text, Text, TableBean> {
private String filename;
private Text outK = new Text();
private TableBean outV = new TableBean();
@Override
protected void setup(Mapper<LongWritable, Text, Text, TableBean>.Context context) throws IOException, InterruptedException {
//获取文件切片信息
FileSplit split = (FileSplit) context.getInputSplit();
filename = split.getPath().getName();
}
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, TableBean>.Context context) throws IOException, InterruptedException {
//1、读取一行
String line = value.toString();
//2、判断文件
if (filename.contains("order")) { //订单表
//切割
String[] word = line.split("\t");
//封装
outK.set(word[1]);
outV.setPid(word[1]);
outV.setId(word[0]);
outV.setAmount(Integer.parseInt(word[2]));
outV.setPname("");
outV.setFlag("order");
} else { //商品表
//切割
String[] word1 = line.split("\t");
//封装
outK.set(word1[0]);
outV.setPid(word1[0]);
outV.setId("");
outV.setAmount(0);
outV.setPname(word1[1]);
outV.setFlag("pd");
}
//写出
context.write(outK, outV);
}
}
(3)编写Reducer类
package com.hadoop.mapreduce.reduceJoin;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;
/**
* @author codestart
* @create 2023-06-21 11:18
*/
public class TableReducer extends Reducer<Text, TableBean, TableBean, NullWritable> {
@Override
protected void reduce(Text key, Iterable<TableBean> values, Reducer<Text, TableBean, TableBean, NullWritable>.Context context) throws IOException, InterruptedException {
//创建集合存放以下形式
//01 1001 1 order
//01 1004 4 order
//01 小米 pd
ArrayList<TableBean> orderBeans = new ArrayList<>();
TableBean pdBean = new TableBean();
//取值写入
for (TableBean value : values) {
if ("order".equals(value.getFlag())) { //订单表
TableBean tmpTableBean = new TableBean();
try {
BeanUtils.copyProperties(tmpTableBean,value);
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
orderBeans.add(tmpTableBean);
} else { //商品表
try {
BeanUtils.copyProperties(pdBean,value);
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
}
}
//循环遍历写入pname(取一条orderBeans写入pname)
for (TableBean orderBean : orderBeans) {
orderBean.setPname(pdBean.getPname());
context.write(orderBean,NullWritable.get());
}
}
}
(4)编写Driver类
package com.hadoop.mapreduce.reduceJoin;
import org.apache.commons.io.output.NullWriter;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.FileOutputStream;
import java.io.IOException;
/**
* @author codestart
* @create 2023-06-21 22:36
*/
public class TableDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
//1、获取job对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2、设置driver的位置
job.setJarByClass(TableDriver.class);
//3、关联Mapper和Reducer
job.setMapperClass(TableMapper.class);
job.setReducerClass(TableReducer.class);
//4、Mapper的K-v输入输出
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(TableBean.class);
//5、最终的输入输出
job.setOutputKeyClass(TableBean.class);
job.setOutputValueClass(NullWriter.class);
//6、设置输入输出的路径
FileInputFormat.setInputPaths(job, new Path("D:\\data\\input\\inputtable"));
FileOutputFormat.setOutputPath(job, new Path("D:\\data\\output\\output3"));
//7、提交job
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
(4)最终效果和总结
最终效果
总结:使用reduce join实现连接两个数据集,如果存在一个数据集非常大,一个数据集非常小,就会出现数据倾斜,所以可以选择使用Map join对数据集进行连接。
以上是我通过网络学习,自己总结和练习的过程。一是为了防止自己忘记学过的知识,二是分享自己学习过程得到的结果,以此来发布博客。以上如有雷同,请联系本人!