Mapreduce_OutputFormat案例

OutPutFormat是Reducer阶段结束,写入到文件的一个过程。也就是Reducer阶段结束后,并不是直接写入文件,需要通过OutPutFormat过程再写入文件。

(1)案例需求

        过滤输入的 log 日志,包含 atguigu 的网站输出到 e:/atguigu.log ,不包含 atguigu 的网站输出到 e:/other.log 。(也就是给定一个数据集,输出多个数据集)
        数据集内容:(log.txt)

 (2)需求分析

输入数据就是log.txt。
输出数据就是

 因为需要输出两个文件,所以就需要继承FileOutputFormat类重写RecordWriter方法,而重写的RecordWriter方法,需要返回一个RecordWriter对象,所以可以额外创建一个类继承RecordWriter类重写其中方法来写实现RecordWriter对象,也可以使用内部类创建RecordWriter对象。

(3)代码实现

创建的是maven项目。

其中pom.xml文件代码如下

<dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.3</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.30</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

1、Mapper类

package com.hadoop.mapreduce.outputFormat;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author codestart
 * @create 2023-06-20 12:13
 */
public class logMapper extends Mapper<LongWritable, Text,Text, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {

        //Mapper阶段不需要做处理
        context.write(value,NullWritable.get());
    }
}

2、Reducer类

package com.hadoop.mapreduce.outputFormat;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;


/**
 * @author codestart
 * @create 2023-06-20 12:17
 */
public class logReducer extends Reducer<Text, NullWritable,Text,NullWritable> {
    @Override
    protected void reduce(Text key, Iterable<NullWritable> values, Reducer<Text, NullWritable, Text, NullWritable>.Context context) throws IOException, InterruptedException {
        //一条一条写入
        for (NullWritable value : values) {
            context.write(key,NullWritable.get());
        }
    }
}

3、重写的OutputFormat类

package com.hadoop.mapreduce.outputFormat;

import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author codestart
 * @create 2023-06-20 18:15
 */
public class logOutputFormat extends FileOutputFormat<Text, NullWritable> {
    @Override
    public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
        LogRecordWriter lrw = new LogRecordWriter(job);
        return lrw;
    }
}

4、重写RecordWrite类

package com.hadoop.mapreduce.outputFormat;

import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

import java.io.IOException;

/**
 * @author codestart
 * @create 2023-06-20 18:20-m
 */
public class LogRecordWriter extends RecordWriter<Text, NullWritable> {

    private FSDataOutputStream atguiguOut;
    private FSDataOutputStream otherOut;

    public LogRecordWriter(TaskAttemptContext job) {
        //创建两条流
        try {
            FileSystem fs = FileSystem.get(job.getConfiguration());

            atguiguOut = fs.create(new Path("D:\\data\\output\\atguigu.log"));
            otherOut = fs.create(new Path("D:\\data\\output\\other.log"));

        } catch (IOException e) {
            e.printStackTrace();
        }

    }

    @Override
    public void write(Text key, NullWritable value) throws IOException, InterruptedException {
        //获取一行内容
        String s = key.toString();

        //查看是否包含某个单词
        if (s.contains("atguigu")) {
            //写入
            atguiguOut.writeBytes(s + "\n");
        } else {
            otherOut.writeBytes(s + "\n");
        }
    }

    @Override
    public void close(TaskAttemptContext context) throws IOException, InterruptedException {
        //关闭
        IOUtils.closeStream(atguiguOut);
        IOUtils.closeStream(otherOut);
    }
}

5、Driver类

package com.hadoop.mapreduce.outputFormat;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author codestart
 * @create 2023-06-20 19:01
 */
public class logDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        //1、获取job
        Configuration conf = new Configuration();
        Job job = new Job(conf);

        //2、设置驱动jar位置
        job.setJarByClass(logDriver.class);

        //3、关联Map和Reudce
        job.setMapperClass(logMapper.class);
        job.setReducerClass(logReducer.class);

        //4、设置Map的输出k-v
        job.setMapOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        //5、设置最终输出的K-V
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        //设置outputformat
        job.setOutputFormatClass(logOutputFormat.class);

        //6、设置输入输出路径,虽然设置输出流的时候设置了输出路径,但是fileoutputformat
        //要输出一个_SUCCESS 文件,所以在这还得指定一个输出目录。
        FileInputFormat.setInputPaths(job, new Path("D:\\data\\input\\inputoutputformat"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\data\\output\\outputfile1"));

        //7、提交任务
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}

(4)预期效果和总结

预期效果

 

 总结:以上是我通过网络学习,自己总结和练习的过程。一是为了防止自己忘记学过的知识,二是分享自己学习过程得到的结果,以此来发布博客。以上如有雷同,请联系本人!

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值