算法备考自用。
迪杰斯特拉
step1:初始化
- 设定起始节点为源节点,记为 s。
- 创建一个集合 S,用于存储已经确定最短路径的节点,初始时只有源节点 s。
- 创建一个距离数组 dist[],其中 dist[s]=0(源节点到自身的距离为0),对于所有其他节点 v,设 dist[v]= 无穷大。
- 使用一个优先队列(或最小堆)来存储节点和当前的最短路径估计值
graph = [
[0, 7, 9, 0, 0, 14],
[7, 0, 10, 15, 0, 0],
[9, 10, 0, 11, 0, 2],
[0, 15, 11, 0, 6, 0],
[0, 0, 0, 6, 0, 9],
[14, 0, 2, 0, 9, 0]
]
def dijkstra(start):
n = len(graph)
distances =[float('inf')] * n
distances[start] = 0
priority_queue = [(0, start)] #(距离,节点)
step2:迭代过程
- 从优先队列中找出距离最小的节点u
- 将节点u加入集合S,表示当前节点最短路径已确定
- 遍历u的每个邻接节点v:
计算alt = dist[u] + weight[u, v]; 当alt < dist[v],则更新dist[v], 并将v和新距离丢进优先队列
while priority_queue:
current_distance, current_node = heapq.heappop(priority_queue)
# 当前距离大于node最小距离,直接拜拜
if current_distance > distances[current_node]:
continue
# 能往下走说明,current_node的最短距离已经确定,相当于加入S那一步
# 遍历该节点的邻接节点
for i in range(n):
if graph[current_node][i] > 0:
distance = current_distance + graph[current_node][i]
if distance < distances[i]:
distances[i] = distance
heapq.heappush(priority_queue, distances[i])
完整代码如下:
import heapq
# 示例图
graph = [
[0, 7, 9, 0, 0, 14],
[7, 0, 10, 15, 0, 0],
[9, 10, 0, 11, 0, 2],
[0, 15, 11, 0, 6, 0],
[0, 0, 0, 6, 0, 9],
[14, 0, 2, 0, 9, 0]
]
def dijkstra(start):
n = len(graph)
distances =[float('inf')] * n
distances[start] = 0
priority_queue = [(0, start)] #(距离,节点)
while priority_queue:
current_distance, current_node = heapq.heappop(priority_queue)
# 当前距离大于node最小距离,直接拜拜
if current_distance > distances[current_node]:
continue
# 能往下走说明,current_node的最短距离已经确定,相当于加入S那一步
# 遍历该节点的邻接节点
for i in range(n):
if graph[current_node][i] > 0:
distance = current_distance + graph[current_node][i]
if distance < distances[i]:
distances[i] = distance
heapq.heappush(priority_queue, distances[i])
return distances
贝尔曼福特:
这玩意是针对有负权重的边的,具体原理可以参考以下视频:
【最短路径(二)Bellman-Ford算法-哔哩哔哩】 https://b23.tv/7jG9IAi
step1:初始化
创建距离数组dist[],初始化为无穷大,起始节点距离设置为0
n = len(graph)
dist = ['inf'] * n
dist[start] = 0
step2:松弛操作(最多v-1次)
若dist[u] + v < dist[v],更新dist[v];每轮有一个节点的值变了,就要再来一轮,当然这一步可以偷懒
for _ in range(n - 1):
for u in range(n):
for v in range(n):
if graph[u][v] != 0: # 说明有边,当然没这句话也可以
if dist[v] > dist[u] + graph[u][v]:
dist[v] = dist[u] + graph[u][v]
step3:检测是否有负环:
再来一次松弛,还有节点变化了,说明有负环,无解
for u in range(n):
for v in range(n):
if dist[v] > dist[u] + graph[u][v]:
print("有坏人")
return None
完整代码
graph = [
[0, 4, 1, 0],
[0, 0, 0, 1],
[0, -2, 0, 5],
[0, 0, 0, 0]
]
def bellman_ford(start):
# 初始化
n = len(graph)
dist = ['inf'] * n
dist[start] = 0
# v-1次松弛
for _ in range(n - 1):
for u in range(n):
for v in range(n):
if graph[u][v] != 0:
if dist[v] > dist[u] + graph[u][v]:
dist[v] = dist[u] + graph[u][v]
# 检测负环
for u in range(n):
for v in range(n):
if dist[v] > dist[u] + graph[u][v]:
print("有坏人")
return None
return dist