step1:初始化
- 创建剩余图
remain_graph使之和给出的graph相等
,并设置最大流max_flow
为 0。 - 初始化父节点数组
parent
广度优先搜索函数
remain_graph = capacity_matrix
n = len(capacity_matrix)
parent = [-1]*n
max_flow = 0
def bfs(remain_graph, s, t, parent):
visited = set()
queue = deque([s])
visited.add(s)
while queue:
vertex = queue.popleft()
for neighbour, capacity in enumerate(capacity_matrix[vertex]):
if neighbour not in visited and capacity > 0:
visited.add(neighbour)
queue.append(neighbour)
parent[neighbour] = vertex
if neighbour == t:
return True
return False
step2:使用BFS找到增广路径,计算路径流量(从汇点t回溯到s,找最小容量)
path_flow = float('inf')
start = t
while start != s:
path_flow = min(path_flow, remain_graph[parent[start]][start])
start = parent[start]
step3:更新残差网络,将路径流量加入最大流。
while v != s:
u = parent[v]
remain_graph[u][v] -= path_flow
remain_graph[v][u] += path_flow
v = u
max_flow += path_flow
step4: 重复步骤2,3直至没有增广路径为止
完整算法代码如下:
def edmonds_karp(capacity_matrix, s, t):
remain_graph = capacity_matrix
n = len(capacity_matrix)
parent = [-1]*n
max_flow = 0
while bfs(remain_graph, s, t, parent):
path_flow = float('inf')
start = t
while start != s:
path_flow = min(path_flow, remain_graph[parent[start]][start])
start = parent[start]
v = t
while v != s:
u = parent[v]
remain_graph[u][v] -= path_flow
remain_graph[v][u] += path_flow
v = u
max_flow += path_flow
return max_flow