Edmonds-Karp最大流算法

step1:初始化

  • 创建剩余图 remain_graph使之和给出的graph相等,并设置最大流 max_flow 为 0。
  • 初始化父节点数组 parent
  • 广度优先搜索函数
remain_graph = capacity_matrix
n = len(capacity_matrix)
parent = [-1]*n
max_flow = 0
def bfs(remain_graph, s, t, parent):
    visited = set()
    queue = deque([s])
    visited.add(s)
    while queue:
        vertex = queue.popleft()
        for neighbour, capacity in enumerate(capacity_matrix[vertex]):
            if neighbour not in visited and capacity > 0:
                visited.add(neighbour)
                queue.append(neighbour)
                parent[neighbour] = vertex
                if neighbour == t:
                    return True
    return False

step2:使用BFS找到增广路径,计算路径流量(从汇点t回溯到s,找最小容量)

path_flow = float('inf')
start = t
while start != s:
        path_flow = min(path_flow, remain_graph[parent[start]][start])
        start = parent[start]

step3:更新残差网络,将路径流量加入最大流。

while v != s:
    u = parent[v]
    remain_graph[u][v] -= path_flow
    remain_graph[v][u] += path_flow
    v = u
max_flow += path_flow

step4: 重复步骤2,3直至没有增广路径为止

完整算法代码如下:

def edmonds_karp(capacity_matrix, s, t):
    remain_graph = capacity_matrix
    n = len(capacity_matrix)
    parent = [-1]*n
    max_flow = 0
    while bfs(remain_graph, s, t, parent):
        path_flow = float('inf')
        start = t
        while start != s:
            path_flow = min(path_flow, remain_graph[parent[start]][start])
            start = parent[start]
        v = t
        while v != s:
            u = parent[v]
            remain_graph[u][v] -= path_flow
            remain_graph[v][u] += path_flow
            v = u
        max_flow += path_flow
    return max_flow

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值