POJ 2253 Frogger (floyed,路径最小值最大化)
Solution
直接套 floyed 模板,更新的时候令 d i s [ i ] [ j ] = m a x ( d i s [ i ] [ j ] , m i n ( d i s [ i ] [ k ] , d i s [ k ] [ j ] ) ) dis[i][j] = max(dis[i][j], min(dis[i][k], dis[k][j])) dis[i][j]=max(dis[i][j],min(dis[i][k],dis[k][j]))
代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<cmath>
#include<string>
#include<queue>
#include<set>
//#define int long long
using namespace std;
typedef pair<int, int> pii;
typedef double dd;
typedef long long ll;
const int MAXN = 210;
const int MAXM = 400010;
const dd eps = 1e-6;
const int mod = 100003;
int n;
pair<int, int> a[MAXN];
dd dis[MAXN][MAXN];
int main()
{
int cnt = 0;
while(cin >> n)
{
if(n==0)
break;
for (int i = 1; i <= n;i++)
{
cin >> a[i].first >> a[i].second;
}
for (int i = 1; i <= n;i++)
{
for (int j = i + 1; j <= n;j++)
{
//dis[i][j] = dis[j][i] = sqrt(pow(a[i].first - a[j].first, 2) + pow(a[i].second - a[j].second, 2));
dis[i][j] = dis[j][i] = sqrt((dd)(a[i].first - a[j].first) * (dd)(a[i].first - a[j].first) + (a[i].second - a[j].second) * (a[i].second - a[j].second));
}
}
for (int k = 1; k <= n;k++)
{
for (int i = 1; i <= n;i++)
{
for (int j = 1; j <= n;j++)
dis[i][j] = min(dis[i][j], max(dis[i][k], dis[k][j]));
}
}
printf("Scenario #%d\n", ++cnt);
printf("Frog Distance = %.3lf\n\n", dis[1][2]);
}
}