仿真图:
芯片/模块的特点:
AT89C52简介:
AT89C52是一款经典的8位单片机,是意法半导体(STMicroelectronics)公司生产的一系列单片机之一。它基于8051内核,并具有许多与其兼容的特性。
AT89C52的主要特点如下:
内部存储器:AT89C52具有8KB的闪存(Flash)存储器,可用于存储用户程序和数据。这些存储器的内容可以通过编程器进行编程和擦除。
RAM存储器:AT89C52配备了256字节的随机存取存储器(RAM),用于暂存数据和程序的变量。
外部扩展性:AT89C52支持多种外部扩展设备的连接,包括外部存储器(如RAM、EEPROM)和外设(如ADC、LCD、UART等),通过外部硬件连接,可以扩展单片机的功能和应用。
通用I/O引脚:AT89C52拥有32个可编程的通用输入/输出引脚,可用于连接外部设备和与其他芯片进行通信。
定时器/计数器:AT89C52内置了3个16位定时器/计数器和一个可编程的串行定时器/计数器。这些计时器/计数器可用于实现定时功能、生成脉冲信号、测量时间间隔等。0
串行通信:AT89C52支持串行通信接口,包括UART(串行异步通信)和SPI(串行外设接口),便于与其他设备进行数据通信和交互。
低功耗模式:AT89C52具有多种低功耗模式,如空闲模式和电源下模式,在不需要执行任务的时候可以将CPU进入低功耗状态以节省能量。
宽电源电压范围:AT89C52的工作电压范围通常为4.0V至5.5V,可以满足大多数应用需求。
DS1302特点:
高精度时间计数:DS1302能够提供高精度的实时时钟计数,可以记录年、月、日、星期、小时、分钟和秒等时间信息。它内部集成了晶体振荡器,提供稳定的时钟信号。
低功耗设计:DS1302采用低功耗设计,可以在低功耗模式下运行,有效延长电池寿命。即使在停电情况下,它也能保持时间数据,并通过外部连接电池继续提供计时功能。
串行接口:DS1302通过串行实时时钟接口(SPI)进行通信和控制。使用少数几个引脚,可以与主控器件进行数据交换和时钟同步。
容易集成:DS1302集成了时钟计数和RAM存储器功能,并具有简单的接口和命令,容易与各种微控制器和单片机集成。它不需要复杂的控制信号,可以通过简单的读写命令进行操作。
可编程控制功能:DS1302具有可编程的控制功能,可以设置闹钟、写保护等特殊功能。它还支持多种时间格式的选择,例如24小时制或12小时制。
温度补偿:DS1302内置温度补偿功能,可以校正温度对时钟频率的影响,提高时钟计数的准确性。
高稳定性和抗震动能力:DS1302具有高稳定性和抗震动能力,适用于各种工业和消费类应用场景。
DS18B20特点:
- 单总线接口:DS18B20使用单总线接口进行通信,只需要一个引脚就可以连接多个传感器,简化了电路设计和连接。
- 数字输出:DS18B20以数字形式输出温度值,不需要额外的模数转换器。它使用12位的分辨率来表示温度值,可以实现高精度的温度测量。
- 高精度:DS18B20可以提供从-55°C到+125°C的温度测量范围,并具有±0.5°C的温度精度。因此,在许多应用中,它可以提供可靠和准确的温度测量结果。
- 多功能性:除了测量温度,DS18B20还可以执行其他功能,如温度报警功能。它可以设置上下限温度阈值,并在温度超过或低于这些阈值时触发报警。
- 低功耗:DS18B20采用低功耗设计,工作电流极低,只需要很少的能量来进行温度测量和通信。
- 耐用性:DS18B20具有良好的耐用性和可靠性,其封装材料和结构设计使其适用于各种环境条件下的应用。
主程序:
#include <reg52.h>
#include <intrins.h>
#include "delay.h"
#include "lcd1602.h"
#include "ds1302.h"
#include "eeprom52.h"
#define uchar unsigned char
#define uint unsigned int
#define LCDIO P0
//管脚定义
sbit LCD_RS = P2^0;
sbit LCD_RW = P2^1;
sbit LCD_EN = P2^2;
sbit LED_STATUS = P2^5;
sbit BUZZER = P3^5;
sbit DQ = P1^0; //ds18b20与单片机连接口
sbit KEY_TIMESET = P2^3; //菜单
sbit KEY_ADD = P2^6; //加一
sbit KEY_SUB = P2^4;
sbit KEY_ALARMSET = P2^7;
sbit KEY_STOPWATCH = P3^6;
//变量定义
int time10MsCnt = 0, timeSecondCnt = 0, timeMinuteCnt = 0;
uint tempValue; //温度值
uchar data dispTempData[5];
bit isNegative;
bit AlarmSwitch = 0;
uchar row0[] = {"20 - - "};
uchar row1[] = {" : : "};
char alarmTime[3] = {0, 0, 0};
unsigned char isNew = 0;
unsigned char g_mode = 0;
unsigned char g_setLocation = 0;
bit refreshTempFlag = 1;
// bit stopwatchFlag = 0;
//函数声明
void DispStopwatch();
void Timer_Init();
void DispTime();
void DS18B20_Delay(unsigned int i);
void DS18B20_Rst();
uchar DS18B20_Read();
void DS18B20_Write(uchar wdata);
uint ReadTemp();
void DispTemp();
void DispAlarmTime();
void KeyScan();
void SetAlarmTime();
void SetTime();
void main()
{
Init_EEPROM();
if (!isNew)
{
DS1302_Read_Time();
}
else
{
DS1302_Init();
}
LCD_Init();
LCD_Clear();
LCD_Write_String(0, 0, row0);
LCD_Write_String(0, 1, row1);
Timer_Init();
// Init_DS1302(); //将1302初始化
BUZZER = 1;
while (1)
{
if (g_mode == 0) //正常显示时间
{
DS1302_Read_Time();
DispTime();
if (refreshTempFlag) // 2s刷新一次温度
{
TR1 = 0;
ReadTemp(); //读取温度
refreshTempFlag = 0;
TR1 = 1;
}
DispTemp(); //显示温度
}
else if (g_mode == 1) //显示秒表
{
DispStopwatch();
}
else if (g_mode == 2) //显示闹钟时间
{
SetAlarmTime();
}
else if (g_mode == 3) //设置时间
{
SetTime();
}
else ;
if (AlarmSwitch == 1)
{
if (timeBufDec[4] == alarmTime[0] && timeBufDec[5] == alarmTime[1] && timeBufDec[6] == alarmTime[2])
{
BUZZER = 0;
}
}
KeyScan();
}
}
void DispStopwatch()
{
LCD_Write_String(0, 0, " Stopwatch ");
LCD_Write_Char(4, 1, timeMinuteCnt / 10 + '0');
LCD_Write_Char(5, 1, timeMinuteCnt % 10 + '0');
LCD_Write_Char(6, 1, ':');
LCD_Write_Char(7, 1, timeSecondCnt / 10 + '0');
LCD_Write_Char(8, 1, timeSecondCnt % 10 + '0');
LCD_Write_Char(9, 1, ':');
LCD_Write_Char(10, 1, time10MsCnt / 10 + '0');
LCD_Write_Char(11, 1, time10MsCnt % 10 + '0');
}
void DispTime()
{
row0[2] = '0' + timeBufDec[1] / 10;
row0[3] = '0' + timeBufDec[1] % 10;
row0[5] = '0' + timeBufDec[2] / 10;
row0[6] = '0' + timeBufDec[2] % 10;
row0[8] = '0' + timeBufDec[3] / 10;
row0[9] = '0' + timeBufDec[3] % 10;
row1[0] = '0' + timeBufDec[4] / 10;
row1[1] = '0' + timeBufDec[4] % 10;
row1[3] = '0' + timeBufDec[5] / 10;
row1[4] = '0' + timeBufDec[5] % 10;
row1[6] = '0' + timeBufDec[6] / 10;
row1[7] = '0' + timeBufDec[6] % 10;
LCD_Write_String(0, 0, row0);
LCD_Write_String(0, 1, row1);
switch (timeBufDec[7])
{
case 1: LCD_Write_String(12, 0, " Sun"); break;
case 2: LCD_Write_String(12, 0, " Mon"); break;
case 3: LCD_Write_String(12, 0, "Tues"); break;
case 4: LCD_Write_String(12, 0, " Wed"); break;
case 5: LCD_Write_String(12, 0, "Thur"); break;
case 6: LCD_Write_String(12, 0, " Fri"); break;
case 7: LCD_Write_String(12, 0, " Sat"); break;
}
}
void DS18B20_Rst() /*ds1820复位*/
{
unsigned char ack = 0;
DQ = 0; //DQ拉低
DelayUs10x(50); //精确延时 大于 480us 小于960us
DQ = 1; //拉高
DelayUs10x(6); //等待电阻上拉
ack = DQ; //如果ack=0则初始化成功, ack=1则初始化失败
while(!DQ);
}
uchar DS18B20_Read() /*读数据*/
{
unsigned char i = 0;
unsigned char dat = 0;
for (i = 8; i > 0; i--)
{
DQ = 0; //给脉冲信号
dat >>= 1;
DQ = 1; //给脉冲信号
if (DQ)
dat |= 0x80;
DelayUs10x(6); //再延时60us
}
return (dat);
}
void DS18B20_Write(uchar wdata) /*写数据*/
{
unsigned char i = 0;
for (i = 8; i > 0; i--)
{
DQ = 0;
DQ = wdata & 0x01;
DelayUs10x(6); //再延时60us
DQ = 1;
wdata >>= 1;
}
}
uint ReadTemp() /*读取温度值并转换*/
{
uchar a, b;
DS18B20_Rst();
DS18B20_Write(0xcc); //*跳过读序列号*/
DS18B20_Write(0x44); //*启动温度转换*/
DS18B20_Rst();
DS18B20_Write(0xcc); //*跳过读序列号*/
DS18B20_Write(0xbe); //*读取温度*/
a = DS18B20_Read();
b = DS18B20_Read();
tempValue = b;
tempValue <<= 8;
tempValue = tempValue | a;
if (tempValue < 0x0fff)
isNegative = 0;
else
{
tempValue = ~tempValue + 1;
isNegative = 1;
}
tempValue = tempValue * (0.625); //温度值扩大10倍,精确到1位小数
return (tempValue);
}
void DispTemp() //温度值显示
{
uchar flagdat;
dispTempData[0] = tempValue / 1000 + '0'; //百位数
dispTempData[1] = tempValue % 1000 / 100 + '0'; //十位数
dispTempData[2] = tempValue % 100 / 10 + '0'; //个位数
dispTempData[3] = tempValue % 10 + '0'; //小数位
if (isNegative == 0)
flagdat = 0x20; //正温度不显示符号
else
flagdat = 0x2d; //负温度显示负号:-
if (dispTempData[0] == 0x30)
{
dispTempData[0] = 0x20; //如果百位为0,不显示
if (dispTempData[1] == 0x30)
{
dispTempData[1] = 0x20; //如果百位为0,十位为0也不显示
}
}
LCD_Write_Char(9, 1, flagdat);
LCD_Write_Char(10, 1, dispTempData[0]);
LCD_Write_Char(11, 1, dispTempData[1]);
LCD_Write_Char(12, 1, dispTempData[2]);
LCD_Write_Char(13, 1, '.');
LCD_Write_Char(14, 1, dispTempData[3]);
LCD_Write_Char(15, 1, 'C');
}
void DispAlarmTime()
{
if (AlarmSwitch)
{
LCD_Write_String(0, 0, " AlarmClock On ");
}
else
{
LCD_Write_String(0, 0, " AlarmClock Off");
}
LCD_Write_Char(4, 1, alarmTime[0] / 10 + '0');
LCD_Write_Char(5, 1, alarmTime[0] % 10 + '0');
LCD_Write_Char(6, 1, ':');
LCD_Write_Char(7, 1, alarmTime[1] / 10 + '0');
LCD_Write_Char(8, 1, alarmTime[1] % 10 + '0');
LCD_Write_Char(9, 1, ':');
LCD_Write_Char(10, 1, alarmTime[2] / 10 + '0');
LCD_Write_Char(11, 1, alarmTime[2] % 10 + '0');
}
void SetAlarmTime()
{
TR1 = 0;
LcdWriteCommand(0x0F, 0);
switch (g_setLocation)
{
case 1: LcdWriteCommand(0x80 + 0x40 + 5, 0); break;
case 2: LcdWriteCommand(0x80 + 0x40 + 8, 0); break;
case 3: LcdWriteCommand(0x80 + 0x40 + 11, 0); break;
case 4: LcdWriteCommand(0x0C, 0); DelayMs(5); LCD_Clear(); Write_EEPROM(); g_setLocation = 0; g_mode = 0; break;
default: ;
}
TR1 = 1;
}
void SetTime()
{
TR1 = 0;
LcdWriteCommand(0x0F, 0);
switch (g_setLocation)
{
case 1: LcdWriteCommand(0x80 + 3, 0); break;
case 2: LcdWriteCommand(0x80 + 6, 0); break;
case 3: LcdWriteCommand(0x80 + 9, 0); break;
case 4: LcdWriteCommand(0x80 +15, 0); break;
case 5: LcdWriteCommand(0x80 + 0x40 + 1, 0); break;
case 6: LcdWriteCommand(0x80 + 0x40 + 4, 0); break;
case 7: LcdWriteCommand(0x80 + 0x40 + 7, 0); break;
case 8: LcdWriteCommand(0x0C, 0); DelayMs(5); LCD_Clear(); DS1302_Write_Time(); g_setLocation = 0; g_mode = 0; break;
default: ;
}
TR1 = 1;
}
void KeyScan()
{
if (!KEY_STOPWATCH) //进入倒计时
{
DelayMs(5);
if (!KEY_STOPWATCH)
{
if (g_mode == 0)
{
LCD_Clear();
g_mode = 1;
}
else if (g_mode == 1)
{
LCD_Clear();
g_mode = 0;
}
}
while (!KEY_STOPWATCH);
}
if (!KEY_TIMESET) //进入倒计时
{
DelayMs(5);
if (!KEY_TIMESET)
{
if (g_mode == 0)
{
g_mode = 3;
g_setLocation = 1;
}
else if (g_mode == 2)
{
AlarmSwitch = ~AlarmSwitch;
}
else if (g_mode == 3)
{
g_setLocation++;
}
}
while (!KEY_TIMESET);
}
if (!KEY_ALARMSET) //进入倒计时
{
DelayMs(5);
if (!KEY_ALARMSET)
{
if (g_mode == 0)
{
LCD_Clear();
g_mode = 2;
g_setLocation = 1;
}
else if (g_mode == 1)
{
LED_STATUS = 1;
time10MsCnt = 0;
timeSecondCnt = 0;
timeMinuteCnt = 0;
}
else if (g_mode == 2)
{
g_setLocation++;
}
}
while (!KEY_ALARMSET);
}
if (!KEY_ADD)
{
DelayMs(5);
if (!KEY_ADD)
{
if (g_mode == 1)
{
TR0 = 1;
}
else if (g_mode == 2)
{
switch (g_setLocation)
{
case 1:
{
alarmTime[0]++;
if (alarmTime[0] > 23)
{
alarmTime[0] = 0;
}
break;
}
case 2:
{
alarmTime[1]++;
if (alarmTime[1] > 59)
{
alarmTime[1] = 0;
}
break;
}
case 3:
{
alarmTime[2]++;
if (alarmTime[2] > 59)
{
alarmTime[2] = 0;
}
break;
}
}
}
else if (g_mode == 3)
{
switch (g_setLocation)
{
case 1:
{
timeBufDec[1]++;
if (timeBufDec[1] > 99)
{
timeBufDec[1] = 0;
}
break;
}
case 2:
{
timeBufDec[2]++;
if (timeBufDec[2] > 12)
{
timeBufDec[2] = 1;
}
break;
}
case 3:
{
timeBufDec[3]++;
if (timeBufDec[3] > YDay(timeBufDec[1], timeBufDec[2]))
{
timeBufDec[3] = 1;
}
break;
}
case 4:
{
timeBufDec[7]++;
if (timeBufDec[7] > 7)
{
timeBufDec[7] = 1;
}
break;
}
case 5:
{
timeBufDec[4]++;
if (timeBufDec[4] > 23)
{
timeBufDec[4] = 0;
}
break;
}
case 6:
{
timeBufDec[5]++;
if (timeBufDec[5] > 59)
{
timeBufDec[5] = 0;
}
break;
}
case 7:
{
timeBufDec[6]++;
if (timeBufDec[6] > 59)
{
timeBufDec[6] = 0;
}
break;
}
}
}
}
else
{
BUZZER = 1;
}
while (!KEY_ADD);
}
if (!KEY_SUB)
{
DelayMs(5);
if (!KEY_SUB)
{
if (g_mode == 1)
{
TR0 = 0;
}
else if (g_mode == 2)
{
switch (g_setLocation)
{
case 1:
{
if (alarmTime[0] <= 0)
{
alarmTime[0] = 24;
}
alarmTime[0]--;
break;
}
case 2:
{
if (alarmTime[1] <= 0)
{
alarmTime[1] = 60;
}
alarmTime[1]--;
break;
}
case 3:
{
if (alarmTime[2] <= 0)
{
alarmTime[2] = 60;
}
alarmTime[2]--;
break;
}
}
}
else if (g_mode == 3)
{
switch (g_setLocation)
{
case 1:
{
if (timeBufDec[1] == 0)
{
timeBufDec[1] = 100;
}
timeBufDec[1]--;
break;
}
case 2:
{
timeBufDec[2]--;
if (timeBufDec[2] < 1)
{
timeBufDec[2] = 12;
}
break;
}
case 3:
{
timeBufDec[3]--;
if (timeBufDec[3] < 1)
{
timeBufDec[3] = YDay(timeBufDec[1], timeBufDec[2]);
}
break;
}
case 4:
{
timeBufDec[7]--;
if (timeBufDec[7] < 1)
{
timeBufDec[7] = 7;
}
break;
}
case 5:
{
if (timeBufDec[4] == 0)
{
timeBufDec[4] = 24;
}
timeBufDec[4]--;
break;
}
case 6:
{
if (timeBufDec[5] == 0)
{
timeBufDec[5] = 60;
}
timeBufDec[5]--;
break;
}
case 7:
{
if (timeBufDec[6] == 0)
{
timeBufDec[6] = 60;
}
timeBufDec[6]--;
break;
}
default:;
}
}
else
{
BUZZER = 1;
}
}
while (!KEY_SUB);
}
}
void Timer_Init()
{
TMOD = 0x11; //T0为定时器方式1 T1为定时器方式1
TH0 = (65536 - 9216) / 256;
TL0 = (65536 - 9216) % 256;
TH1 = (65536 - 9216) / 256;
TL1 = (65536 - 9216) % 256;
ET0 = 1;
ET1 = 1;
TR1 = 1;
EA = 1;
}
void Timer0_Interrupt() interrupt 1
{
TH0 = (65536 - 9216) / 256; //10ms
TL0 = (65536 - 9216) % 256;
time10MsCnt++;
if (time10MsCnt >= 100)
{
time10MsCnt = 0;
LED_STATUS = ~LED_STATUS;
timeSecondCnt = timeSecondCnt + 1;
if (timeSecondCnt > 59)
{
timeSecondCnt = 0;
timeMinuteCnt = timeMinuteCnt + 1;
if (timeMinuteCnt > 59)
timeMinuteCnt = 0;
}
}
}
void Timer1_Interrupt() interrupt 3
{
static unsigned char cnt = 0;
static unsigned char cnt1 = 0;
TH1 = (65536 - 9216) / 256; //10ms
TL1 = (65536 - 9216) % 256;
if (g_mode == 2)
{
if (cnt1 >= 10)
{
DispAlarmTime();
cnt1 = 0;
}
else
{
cnt1++;
}
}
else if (g_mode == 3)
{
if (cnt1 >= 10)
{
DispTime();
cnt1 = 0;
}
else
{
cnt1++;
}
}
if (g_mode == 0)
{
if (cnt >= 200)
{
refreshTempFlag = 1;
cnt = 0;
}
else
{
cnt++;
}
}
}
设计文件: