二元Weierstrass逼近定理及其证明

本文介绍了一个关于二元函数逼近的重要数学定理——二元Weierstrass逼近定理。该定理表明,在闭区间[0,1]×[0,1]上连续的二元函数f(x,y),可以通过Bernstein多项式的极限逼近到任意精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二元WeierstrassWeierstrassWeierstrass逼近定理:设f(x,y)f(x,y)f(x,y)在区域0≤x≤1,0≤y≤10\le x\le 1,0\le y\le 10x1,0y1上连续,称
Bm,n(f,;x,y)=∑ν=0m∑μ=0nCmνCnμxν(1−x)m−νyμ(1−y)n−μf(νm,μn) B_{m,n}(f,;x,y)=\sum_{\nu=0}^m\sum_{\mu=0}^nC_m^\nu C_n^\mu x^\nu (1-x)^{m-\nu}y^{\mu}(1-y)^{n-\mu}f \left(\dfrac{\nu}{m},\dfrac{\mu}{n} \right) Bm,n(f,;x,y)=ν=0mμ=0nCmνCnμxν(1x)mνyμ(1y)nμf(mν,nμ)
(m,n)(m,n)(m,n)BernsteinBernsteinBernstein多项式,则当m,n→∞m,n\to \inftym,n时,Bm,n(f;x,y)→f(x,y),(x,y)∈[0,1]×[0,1]B_{m,n}(f;x,y)\to f(x,y), (x,y)\in [0,1]\times [0,1]Bm,n(f;x,y)f(x,y),(x,y)[0,1]×[0,1]

证明:记bm,ν,n,μ(x,y)=CmνCnμxν(1−x)m−νyμ(1−y)n−μ=bm,ν(x)bn,μ(y)b_{m,\nu,n,\mu}(x,y)=C_m^\nu C_n^\mu x^\nu (1-x)^{m-\nu}y^{\mu}(1-y)^{n-\mu}=b_{m,\nu}(x)b_{n,\mu}(y)bm,ν,n,μ(x,y)=CmνCnμxν(1x)mνyμ(1y)nμ=bm,ν(x)bn,μ(y)

因为 f(x,y)f(x,y)f(x,y)是闭区间上的连续函数

所以f(x,y)f(x,y)f(x,y)一致连续,即∀ε>0,∃δ>0\forall \varepsilon>0,\exist \delta>0ε>0,δ>0,对∀(x1,y1),(x2,y2)∈[0,1]×[0,1]\forall (x_1,y_1),(x_2,y_2)\in [0,1]\times [0,1](x1,y1),(x2,y2)[0,1]×[0,1],满足∣x1−x2∣<δ,∣y1−y2∣<δ|x_1-x_2|<\delta, |y_1-y_2|<\deltax1x2<δ,y1y2<δ,有∣f(x1,y1)−f(x2,y2)∣<ε4|f(x_1,y_1)-f(x_2,y_2)|<\dfrac{\varepsilon}{4}f(x1,y1)f(x2,y2)<4ε

注意到∑ν=0m∑μ=0nbm,ν,n,μ(x,y)=1\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^nb_{m,\nu,n,\mu}(x,y)=1ν=0mμ=0nbm,ν,n,μ(x,y)=1,对任意(x,y)∈[0,1]×[0,1](x,y)\in [0,1]\times [0,1](x,y)[0,1]×[0,1],有
∣f(x,y)−Bm,n(f;x,y)∣=∣∑ν=0m∑μ=0nf(x,y)bm,ν,n,μ(x,y)−∑ν=0m∑μ=0nf(νm,μn)bm,ν,n,μ(x,y)∣≤∑ν=0m∑μ=0n∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y) \begin{align} |f(x,y)-B_{m,n}(f;x,y)|&=\left|\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n f(x,y)b_{m,\nu,n,\mu}(x,y)-\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)b_{m,\nu,n,\mu}(x,y)\right|\\ &\le\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n \left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) \end{align} f(x,y)Bm,n(f;x,y)=ν=0mμ=0nf(x,y)bm,ν,n,μ(x,y)ν=0mμ=0nf(mν,nμ)bm,ν,n,μ(x,y)ν=0mμ=0nf(x,y)f(mν,nμ)bm,ν,n,μ(x,y)
将上述方程右边的求和项分为四部分
∑ν=0m∑μ=0n≤∑∣x−ν/m∣<δ∑∣y−μ/n∣<δ+∑∣x−ν/m∣≥δ∑∣y−μ/n∣<δ+∑∣x−ν/m∣<δ∑∣y−μ/n∣≥δ+∑∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ \sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n\le \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|<\delta}+ \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|<\delta}+ \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge\delta}+ \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge\delta} ν=0mμ=0nxν/m<δyμ/n<δ+xν/mδyμ/n<δ+xν/m<δyμ/nδ+xν/mδyμ/nδ
对于第一部分,有
∑∣x−ν/m∣<δ∑∣y−μ/n∣<δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)<ε4∑∣x−ν/m∣<δ∑∣y−μ/n∣<δbm,ν,n,μ(x,y)<ε4 \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|<\delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)<\dfrac{\varepsilon}{4}\sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|<\delta}b_{m,\nu,n,\mu}(x,y)< \dfrac{\varepsilon}{4} xν/m<δyμ/n<δf(x,y)f(mν,nμ)bm,ν,n,μ(x,y)<4εxν/m<δyμ/n<δbm,ν,n,μ(x,y)<4ε
对于第二部分,注意到(y−μ/n)2/δ2≥1,∑ν=0mbm,ν(x)=1(y-\mu/n)^2/\delta^2\ge 1, \sum\limits_{\nu=0}^mb_{m,\nu}(x)=1(yμ/n)2/δ21,ν=0mbm,ν(x)=1,于是有
∑∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)≤∑ν=0m∑∣y−μ/n∣≥δ2Mbm,ν(x)bn,μ(y)≤∑∣y−μ/n∣≥δ2M(y−μ/n)2δ2bn,μ(y)≤2Mn2δ2∑μ=0n(μ−ny)2bn,μ(y) \begin{align} \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) &\le \sum\limits_{\nu = 0}^m\sum\limits_{|y-\mu/n|\ge \delta}2M b_{m,\nu}(x)b_{n,\mu}(y)\\ &\le \sum\limits_{|y-\mu/n|\ge \delta}2M \dfrac{(y-\mu/n)^2}{\delta^2}b_{n,\mu}(y)\\ &\le \dfrac{2M}{n^2\delta^2}\sum\limits_{\mu =0}^n{(\mu-ny)^2}b_{n,\mu}(y) \end{align} xν/m<δyμ/nδf(x,y)f(mν,nμ)bm,ν,n,μ(x,y)ν=0myμ/nδ2Mbm,ν(x)bn,μ(y)yμ/nδ2Mδ2(yμ/n)2bn,μ(y)n2δ22Mμ=0n(μny)2bn,μ(y)
其中M=max⁡0≤x≤1,0≤y≤1∣f(x,y)∣M=\max\limits_{0\le x\le 1, 0\le y\le1}|f(x,y)|M=0x1,0y1maxf(x,y)

又注意到∑μ=0n(μ−my)2bn,μ(y)=ny(1−y),y(1−y)≤1/4\sum\limits_{\mu =0}^n{(\mu-my)^2}b_{n,\mu}(y)=ny(1-y),y(1-y)\le 1/4μ=0n(μmy)2bn,μ(y)=ny(1y),y(1y)1/4

于是有
∑∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)≤2Mnδ2y(1−y)≤M2nδ2 \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)\le \dfrac{2M}{n\delta^2}y(1-y)\le \dfrac{M}{2n\delta^2} xν/m<δyμ/nδf(x,y)f(mν,nμ)bm,ν,n,μ(x,y)nδ22My(1y)2nδ2M
N1=2Mεδ2N_1=\dfrac{2M}{\varepsilon\delta^2}N1=εδ22M,则当n>N1n> N_1n>N1时,有
∑∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)<ε4 \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) <\dfrac{\varepsilon}{4} xν/m<δyμ/nδf(x,y)f(mν,nμ)bm,ν,n,μ(x,y)<4ε
对于第三部分同理,有
∑∣x−ν/m∣≥δ∑∣y−μ/n∣<δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)<ε4 \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|< \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) <\dfrac{\varepsilon}{4} xν/mδyμ/n<δf(x,y)f(mν,nμ)bm,ν,n,μ(x,y)<4ε
对于第四部分,注意到(x−ν/m)2/δ2≥1,(y−μ/n)2/δ2≥1(x-\nu/m)^2/\delta^2\ge 1,(y-\mu/n)^2/\delta^2\ge 1(xν/m)2/δ21,(yμ/n)2/δ21,于是有
∑∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)≤∑∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ2Mbm,ν(x)bn,μ(y)≤∑∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ2M(x−ν/m)2δ2bm,ν(x)(y−μ/n)2δ2bn,μ(y)≤2Mm2n2δ4∑ν=0m∑μ=0n(ν−mx)2bm,ν(x)(μ−ny)2bn,μ(y) \begin{align} \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) &\le \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}2M b_{m,\nu}(x)b_{n,\mu}(y)\\ &\le \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}2M \dfrac{(x-\nu/m)^2}{\delta^2}b_{m,\nu}(x)\dfrac{(y-\mu/n)^2}{\delta^2}b_{n,\mu}(y)\\ &\le \dfrac{2M}{m^2n^2\delta^4}\sum\limits_{\nu =0}^m\sum\limits_{\mu =0}^n{(\nu-mx)^2b_{m,\nu}(x)(\mu-ny)^2}b_{n,\mu}(y) \end{align} xν/mδyμ/nδf(x,y)f(mν,nμ)bm,ν,n,μ(x,y)xν/mδyμ/nδ2Mbm,ν(x)bn,μ(y)xν/mδyμ/nδ2Mδ2(xν/m)2bm,ν(x)δ2(yμ/n)2bn,μ(y)m2n2δ42Mν=0mμ=0n(νmx)2bm,ν(x)(μny)2bn,μ(y)
其中M=max⁡0≤x≤1,0≤y≤1∣f(x,y)∣M=\max\limits_{0\le x\le 1, 0\le y\le1}|f(x,y)|M=0x1,0y1maxf(x,y)

又注意到∑ν=0m(ν−mx)2bm,ν(x)=mx(1−x),x(1−x)≤1/4,∑μ=0n(μ−my)2bn,μ(y)=ny(1−y),y(1−y)≤1/4\sum\limits_{\nu =0}^m{(\nu-mx)^2}b_{m,\nu}(x)=mx(1-x),x(1-x)\le 1/4,\sum\limits_{\mu =0}^n{(\mu-my)^2}b_{n,\mu}(y)=ny(1-y),y(1-y)\le 1/4ν=0m(νmx)2bm,ν(x)=mx(1x),x(1x)1/4,μ=0n(μmy)2bn,μ(y)=ny(1y),y(1y)1/4

于是有
∑∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)≤2Mmnδ4x(1−x)y(1−y)≤M8mnδ2 \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)\le \dfrac{2M}{mn\delta^4}x(1-x)y(1-y)\le \dfrac{M}{8mn\delta^2} xν/m<δyμ/nδf(x,y)f(mν,nμ)bm,ν,n,μ(x,y)mnδ42Mx(1x)y(1y)8mnδ2M
则当mn>M2εδ2mn>\dfrac{M}{2\varepsilon \delta^2}mn>2εδ2M时,有
∑∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)<ε4 \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) <\dfrac{\varepsilon}{4} xν/mδyμ/nδf(x,y)f(mν,nμ)bm,ν,n,μ(x,y)<4ε
综上,有max⁡0≤x≤1,0≤y≤1∣f(x,y)−Bm,n(f;x,y)∣<ε\max\limits_{0\le x\le 1, 0\le y\le1}|f(x,y)-B_{m,n}(f;x,y)|<\varepsilon0x1,0y1maxf(x,y)Bm,n(f;x,y)<ε

Bm,n(f;x,y)→f(x,y),(x,y)∈[0,1]×[0,1]B_{m,n}(f;x,y)\to f(x,y),(x,y)\in[0,1]\times [0,1]Bm,n(f;x,y)f(x,y),(x,y)[0,1]×[0,1]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值