二元WeierstrassWeierstrassWeierstrass逼近定理:设f(x,y)f(x,y)f(x,y)在区域0≤x≤1,0≤y≤10\le x\le 1,0\le y\le 10≤x≤1,0≤y≤1上连续,称
Bm,n(f,;x,y)=∑ν=0m∑μ=0nCmνCnμxν(1−x)m−νyμ(1−y)n−μf(νm,μn)
B_{m,n}(f,;x,y)=\sum_{\nu=0}^m\sum_{\mu=0}^nC_m^\nu C_n^\mu x^\nu (1-x)^{m-\nu}y^{\mu}(1-y)^{n-\mu}f \left(\dfrac{\nu}{m},\dfrac{\mu}{n} \right)
Bm,n(f,;x,y)=ν=0∑mμ=0∑nCmνCnμxν(1−x)m−νyμ(1−y)n−μf(mν,nμ)
为(m,n)(m,n)(m,n)阶BernsteinBernsteinBernstein多项式,则当m,n→∞m,n\to \inftym,n→∞时,Bm,n(f;x,y)→f(x,y),(x,y)∈[0,1]×[0,1]B_{m,n}(f;x,y)\to f(x,y), (x,y)\in [0,1]\times [0,1]Bm,n(f;x,y)→f(x,y),(x,y)∈[0,1]×[0,1]
证明:记bm,ν,n,μ(x,y)=CmνCnμxν(1−x)m−νyμ(1−y)n−μ=bm,ν(x)bn,μ(y)b_{m,\nu,n,\mu}(x,y)=C_m^\nu C_n^\mu x^\nu (1-x)^{m-\nu}y^{\mu}(1-y)^{n-\mu}=b_{m,\nu}(x)b_{n,\mu}(y)bm,ν,n,μ(x,y)=CmνCnμxν(1−x)m−νyμ(1−y)n−μ=bm,ν(x)bn,μ(y)
因为 f(x,y)f(x,y)f(x,y)是闭区间上的连续函数
所以f(x,y)f(x,y)f(x,y)一致连续,即∀ε>0,∃δ>0\forall \varepsilon>0,\exist \delta>0∀ε>0,∃δ>0,对∀(x1,y1),(x2,y2)∈[0,1]×[0,1]\forall (x_1,y_1),(x_2,y_2)\in [0,1]\times [0,1]∀(x1,y1),(x2,y2)∈[0,1]×[0,1],满足∣x1−x2∣<δ,∣y1−y2∣<δ|x_1-x_2|<\delta, |y_1-y_2|<\delta∣x1−x2∣<δ,∣y1−y2∣<δ,有∣f(x1,y1)−f(x2,y2)∣<ε4|f(x_1,y_1)-f(x_2,y_2)|<\dfrac{\varepsilon}{4}∣f(x1,y1)−f(x2,y2)∣<4ε
注意到∑ν=0m∑μ=0nbm,ν,n,μ(x,y)=1\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^nb_{m,\nu,n,\mu}(x,y)=1ν=0∑mμ=0∑nbm,ν,n,μ(x,y)=1,对任意(x,y)∈[0,1]×[0,1](x,y)\in [0,1]\times [0,1](x,y)∈[0,1]×[0,1],有
∣f(x,y)−Bm,n(f;x,y)∣=∣∑ν=0m∑μ=0nf(x,y)bm,ν,n,μ(x,y)−∑ν=0m∑μ=0nf(νm,μn)bm,ν,n,μ(x,y)∣≤∑ν=0m∑μ=0n∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)
\begin{align}
|f(x,y)-B_{m,n}(f;x,y)|&=\left|\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n f(x,y)b_{m,\nu,n,\mu}(x,y)-\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)b_{m,\nu,n,\mu}(x,y)\right|\\
&\le\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n \left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)
\end{align}
∣f(x,y)−Bm,n(f;x,y)∣=∣∣ν=0∑mμ=0∑nf(x,y)bm,ν,n,μ(x,y)−ν=0∑mμ=0∑nf(mν,nμ)bm,ν,n,μ(x,y)∣∣≤ν=0∑mμ=0∑n∣∣f(x,y)−f(mν,nμ)∣∣bm,ν,n,μ(x,y)
将上述方程右边的求和项分为四部分
∑ν=0m∑μ=0n≤∑∣x−ν/m∣<δ∑∣y−μ/n∣<δ+∑∣x−ν/m∣≥δ∑∣y−μ/n∣<δ+∑∣x−ν/m∣<δ∑∣y−μ/n∣≥δ+∑∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ
\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n\le \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|<\delta}+
\sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|<\delta}+
\sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge\delta}+
\sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge\delta}
ν=0∑mμ=0∑n≤∣x−ν/m∣<δ∑∣y−μ/n∣<δ∑+∣x−ν/m∣≥δ∑∣y−μ/n∣<δ∑+∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∑+∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ∑
对于第一部分,有
∑∣x−ν/m∣<δ∑∣y−μ/n∣<δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)<ε4∑∣x−ν/m∣<δ∑∣y−μ/n∣<δbm,ν,n,μ(x,y)<ε4
\sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|<\delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)<\dfrac{\varepsilon}{4}\sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|<\delta}b_{m,\nu,n,\mu}(x,y)< \dfrac{\varepsilon}{4}
∣x−ν/m∣<δ∑∣y−μ/n∣<δ∑∣∣f(x,y)−f(mν,nμ)∣∣bm,ν,n,μ(x,y)<4ε∣x−ν/m∣<δ∑∣y−μ/n∣<δ∑bm,ν,n,μ(x,y)<4ε
对于第二部分,注意到(y−μ/n)2/δ2≥1,∑ν=0mbm,ν(x)=1(y-\mu/n)^2/\delta^2\ge 1, \sum\limits_{\nu=0}^mb_{m,\nu}(x)=1(y−μ/n)2/δ2≥1,ν=0∑mbm,ν(x)=1,于是有
∑∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)≤∑ν=0m∑∣y−μ/n∣≥δ2Mbm,ν(x)bn,μ(y)≤∑∣y−μ/n∣≥δ2M(y−μ/n)2δ2bn,μ(y)≤2Mn2δ2∑μ=0n(μ−ny)2bn,μ(y)
\begin{align}
\sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)
&\le \sum\limits_{\nu = 0}^m\sum\limits_{|y-\mu/n|\ge \delta}2M b_{m,\nu}(x)b_{n,\mu}(y)\\
&\le \sum\limits_{|y-\mu/n|\ge \delta}2M \dfrac{(y-\mu/n)^2}{\delta^2}b_{n,\mu}(y)\\
&\le \dfrac{2M}{n^2\delta^2}\sum\limits_{\mu =0}^n{(\mu-ny)^2}b_{n,\mu}(y)
\end{align}
∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∑∣∣f(x,y)−f(mν,nμ)∣∣bm,ν,n,μ(x,y)≤ν=0∑m∣y−μ/n∣≥δ∑2Mbm,ν(x)bn,μ(y)≤∣y−μ/n∣≥δ∑2Mδ2(y−μ/n)2bn,μ(y)≤n2δ22Mμ=0∑n(μ−ny)2bn,μ(y)
其中M=max0≤x≤1,0≤y≤1∣f(x,y)∣M=\max\limits_{0\le x\le 1, 0\le y\le1}|f(x,y)|M=0≤x≤1,0≤y≤1max∣f(x,y)∣
又注意到∑μ=0n(μ−my)2bn,μ(y)=ny(1−y),y(1−y)≤1/4\sum\limits_{\mu =0}^n{(\mu-my)^2}b_{n,\mu}(y)=ny(1-y),y(1-y)\le 1/4μ=0∑n(μ−my)2bn,μ(y)=ny(1−y),y(1−y)≤1/4
于是有
∑∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)≤2Mnδ2y(1−y)≤M2nδ2
\sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)\le \dfrac{2M}{n\delta^2}y(1-y)\le \dfrac{M}{2n\delta^2}
∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∑∣∣f(x,y)−f(mν,nμ)∣∣bm,ν,n,μ(x,y)≤nδ22My(1−y)≤2nδ2M
令N1=2Mεδ2N_1=\dfrac{2M}{\varepsilon\delta^2}N1=εδ22M,则当n>N1n> N_1n>N1时,有
∑∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)<ε4
\sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) <\dfrac{\varepsilon}{4}
∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∑∣∣f(x,y)−f(mν,nμ)∣∣bm,ν,n,μ(x,y)<4ε
对于第三部分同理,有
∑∣x−ν/m∣≥δ∑∣y−μ/n∣<δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)<ε4
\sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|< \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) <\dfrac{\varepsilon}{4}
∣x−ν/m∣≥δ∑∣y−μ/n∣<δ∑∣∣f(x,y)−f(mν,nμ)∣∣bm,ν,n,μ(x,y)<4ε
对于第四部分,注意到(x−ν/m)2/δ2≥1,(y−μ/n)2/δ2≥1(x-\nu/m)^2/\delta^2\ge 1,(y-\mu/n)^2/\delta^2\ge 1(x−ν/m)2/δ2≥1,(y−μ/n)2/δ2≥1,于是有
∑∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)≤∑∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ2Mbm,ν(x)bn,μ(y)≤∑∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ2M(x−ν/m)2δ2bm,ν(x)(y−μ/n)2δ2bn,μ(y)≤2Mm2n2δ4∑ν=0m∑μ=0n(ν−mx)2bm,ν(x)(μ−ny)2bn,μ(y)
\begin{align}
\sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)
&\le \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}2M b_{m,\nu}(x)b_{n,\mu}(y)\\
&\le \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}2M \dfrac{(x-\nu/m)^2}{\delta^2}b_{m,\nu}(x)\dfrac{(y-\mu/n)^2}{\delta^2}b_{n,\mu}(y)\\
&\le \dfrac{2M}{m^2n^2\delta^4}\sum\limits_{\nu =0}^m\sum\limits_{\mu =0}^n{(\nu-mx)^2b_{m,\nu}(x)(\mu-ny)^2}b_{n,\mu}(y)
\end{align}
∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ∑∣∣f(x,y)−f(mν,nμ)∣∣bm,ν,n,μ(x,y)≤∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ∑2Mbm,ν(x)bn,μ(y)≤∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ∑2Mδ2(x−ν/m)2bm,ν(x)δ2(y−μ/n)2bn,μ(y)≤m2n2δ42Mν=0∑mμ=0∑n(ν−mx)2bm,ν(x)(μ−ny)2bn,μ(y)
其中M=max0≤x≤1,0≤y≤1∣f(x,y)∣M=\max\limits_{0\le x\le 1, 0\le y\le1}|f(x,y)|M=0≤x≤1,0≤y≤1max∣f(x,y)∣
又注意到∑ν=0m(ν−mx)2bm,ν(x)=mx(1−x),x(1−x)≤1/4,∑μ=0n(μ−my)2bn,μ(y)=ny(1−y),y(1−y)≤1/4\sum\limits_{\nu =0}^m{(\nu-mx)^2}b_{m,\nu}(x)=mx(1-x),x(1-x)\le 1/4,\sum\limits_{\mu =0}^n{(\mu-my)^2}b_{n,\mu}(y)=ny(1-y),y(1-y)\le 1/4ν=0∑m(ν−mx)2bm,ν(x)=mx(1−x),x(1−x)≤1/4,μ=0∑n(μ−my)2bn,μ(y)=ny(1−y),y(1−y)≤1/4
于是有
∑∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)≤2Mmnδ4x(1−x)y(1−y)≤M8mnδ2
\sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)\le \dfrac{2M}{mn\delta^4}x(1-x)y(1-y)\le \dfrac{M}{8mn\delta^2}
∣x−ν/m∣<δ∑∣y−μ/n∣≥δ∑∣∣f(x,y)−f(mν,nμ)∣∣bm,ν,n,μ(x,y)≤mnδ42Mx(1−x)y(1−y)≤8mnδ2M
则当mn>M2εδ2mn>\dfrac{M}{2\varepsilon \delta^2}mn>2εδ2M时,有
∑∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ∣f(x,y)−f(νm,μn)∣bm,ν,n,μ(x,y)<ε4
\sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) <\dfrac{\varepsilon}{4}
∣x−ν/m∣≥δ∑∣y−μ/n∣≥δ∑∣∣f(x,y)−f(mν,nμ)∣∣bm,ν,n,μ(x,y)<4ε
综上,有max0≤x≤1,0≤y≤1∣f(x,y)−Bm,n(f;x,y)∣<ε\max\limits_{0\le x\le 1, 0\le y\le1}|f(x,y)-B_{m,n}(f;x,y)|<\varepsilon0≤x≤1,0≤y≤1max∣f(x,y)−Bm,n(f;x,y)∣<ε
故Bm,n(f;x,y)→f(x,y),(x,y)∈[0,1]×[0,1]B_{m,n}(f;x,y)\to f(x,y),(x,y)\in[0,1]\times [0,1]Bm,n(f;x,y)→f(x,y),(x,y)∈[0,1]×[0,1]